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Abstract
Analogical reasoning is a powerful reasoning tool
that enables humans to connect two situations,
and to generalize their knowledge from familiar to
novel situations. Cognitive Science research pro-
vides valuable insights into the richness and com-
plexity of analogical reasoning, together with im-
plementations of expressive analogical reasoners
with limited scalability. Modern scalable AI tech-
niques with the potential to reason by analogy have
focused on the special case of proportional analogy,
and have seldom been applied to understand higher-
order analogies. In this paper, we aim to bridge
the gap on the task of narrative understanding, by:
1) formalizing six dimensions of analogy based on
mature insights from Cognitive Science research,
2) annotating a corpus of fables with each of these
dimensions, and 3) defining four tasks with increas-
ing complexity that enable scalable evaluation of
AI techniques. Experiments with language models
and neuro-symbolic AI reasoners on these tasks re-
veal that state-of-the-art methods can be applied to
reason by analogy with a limited success, motivat-
ing the need for further research towards compre-
hensive and scalable analogical reasoning by AI.
We make all our code and data available.

1 Introduction
Understanding narratives requires command of qualitative
causal relationships between events, entities, and quantities.
Qualitative Reasoning (QR) models have been developed to
formalize such relationships in accordance with human men-
tal models [Forbus, 2011], and recent work has demonstrated
their ability to model social reasoning [Tomai and Forbus,
2007; Dehghani et al., 2008]. Yet, building scalable cogni-
tive AI architectures requires qualitative representations to be
combined with mechanisms that enable efficient and effective
generalization and reuse of knowledge, through analogy.

Cognitive Science research dictates that humans develop
the ability for analogical reasoning in the first several years
of their lives, and rely on this ability to understand, explain,
or imagine situations across domains [Holyoak et al., 1995].
In law, practitioners rely on precedents to make decisions in

novel complicated cases. In education, teachers seek familiar
situations to capture the student intuition about novel con-
cepts and processes. In politics, leaders craft their arguments
based on the lessons learned from impactful events that are
commonly known amongst their people. In business, innova-
tors get inspired from the design of processes and objects that
have similar function or purpose, being it found in nature or
man-made.

Analogical reasoning can manifest in many ways. Some
may serve to help describe an object, for example a fire en-
gine may be red like a tomato. Others may be figurative,
comparing a lover to a summer’s day. Analogies may draw
on relationships between entities, such as comparing the Sun
and the Earth to the Earth and the Moon, based on a revolves
relation. Analogies may also describe events such as compar-
ing a natural disaster to a war, or convey causal information,
such as the contributors to the Great Depression and the finan-
cial crisis. Given the diversity of these analogies, building AI
agents to understand and generate analogies must possess a
variety of skills for relational awareness.

While a rich body of Cognitive Science work on analog-
ical reasoning exists [Gentner, 1983; Holyoak et al., 1995;
Tversky, 1977], modern AI techniques have not been adapted
to this challenge at scale. As machine learning is the dom-
inant AI paradigm in the past decade, AI models largely
base their predictions on prior experiences. However, they
generally lack analogical inference mechanisms, i.e., mech-
anisms to distill high-level patterns, such as entire situations
or events, from exemplar data. This prevents neural meth-
ods from learning efficiently with little data and understand-
ing, imagining, and explaining novel situations [Chen et al.,
2019]. For example, large language models like BERT [De-
vlin et al., 2018] and GPT-3 [Brown et al., 2020] struggle
with understanding analogies between proportions [Ushio et
al., 2021b], and they are likely to perform poorly on more
complex analogies between two situations or domains. Qual-
itative representations [Forbus, 2011] facilitate the continu-
ous modeling of situations, which is essential for narrative
understanding, but they require mechanisms to generalize to
a wider set of examples. Seminal cognitively inspired ar-
chitectures [Forbus et al., 1995; Aamodt and Plaza, 1994;
Forbus and Hinrichs, 2017] are able to draw analogies be-
tween situations, yet, adapting them to understand narratives
at scale is an open challenge.



To bridge this gap between cognitive insights and AI al-
gorithms, we develop a novel taxonomy of six dimensions
of analogy. We apply this taxonomy to annotate analogies
in pairs of fables, and we perform extensive evaluation and
analysis of state-of-the-art AI methods across the different
analogical categories. Concretely, our contributions are:

1. We motivate and formally define six dimensions of anal-
ogy that are essential for AI models to understand and
reason qualitatively with in situations such as stories.

2. We annotate 44 story pairs with each of the six analogi-
cal dimensions. We also correlate these annotations with
literal similarity and emotional arc similarity.

3. We define four analogical tasks on this dataset and evalu-
ate several representative state-of-the-art methods based
on language models and frame sequences, noting that
these are insufficient to capture variants of analogical
similarity.

2 Dimensions of Analogical Reasoning

2.1 Insights from Cognitive Science

People are born without an analogical reasoning skill, yet,
this skill has been shown to develop over time with the ex-
pansion of knowledge [Gentner, 1988]. Holyoak et al. spec-
ify three levels of analogy, each tied approximately with hu-
man age as a proxy for this knowledge: 1) Attributive - A is
like B because they share an attribute value (e.g., the ocean is
like this car as both as blue). This analogical skill is formed
in humans between age 1 and 2 [Gentner and Toupin, 1986].
2) Proportional - A is like B because they have a similar role
in their pairwise proportions. For example, car is like sofa
because (car-larger than-motorcycle) and (sofa-larger than-
chair). This is formed at human age of 3 to 4. 3) Structural
- A is like B because their structures align, typically due to
causality. Humans acquire structural reasoning at 5 - 6 years
of age.

According to [Gentner and Markman, 1997], analogy is
drawn between two domains or situations. A successful anal-
ogy requires three criteria to be fulfilled [Holyoak et al.,
1995]. 1) Systematicity - the two analogical structures should
be aligned - if they are not, comparison is meaningless. 2) Re-
lational similarity - the two structures should have relational
similarity, i.e., their fillers should play a similar role in the
overall structure of the domain or the situation. 3) Purpose -
as the two structures are not overall very similar, drawing an
analogy is a creative process that is driven by a certain goal.

Analogy focuses on relational similarity, and as such it dif-
fers from other notions of similarity, such as literal similarity,
mere appearance, and anomaly [Tversky, 1977]. Literal sim-
ilarity between two objects A and B is proportional to the
intersection of their features and inversely proportional to the
features that differ (A−B and B−A), where features include
both attributes and relational predicates. Mere appearance
focuses on similarity between attributes and not the relation-
ships (e.g., moon - coin), while anomaly refers to a compari-
son with no attribute nor relational overlap [Gentner, 1983].

2.2 Our Taxonomy
Guided by the rich body of theoretical work, we devise six
dimensions of analogy that we expect to be valid for narrative
structures. Namely:

1. Shallow Attribute Analogy (SAA) - Characters in the
two situations (here, stories) have explicitly stated physi-
cal attributes that are similar. For example, given story A
where one of the protagonists is a brown fox and story B
that features a brown deer, one can draw an analogy between
the two stories based on shallow attribute correspondence:
brown(fox) ↔ brown(deer)).

2. Deep Attribute Analogy (DAA) - Characters in the two
stories have abstract attributes that are similar. For exam-
ple, given story A where an ass is depicted as naive and story
B that features a naive deer, one can draw an analogy be-
tween the two stories based on deep attribute correspondence:
naive(ass) ↔ naive(deer).

3. Relational Analogy (RA) - Character pairs in the two
stories have a similar first-order relationship to each other.
For instance, given a story A where a fox and a deer are
friends, and story B where a conman is a friend with a coun-
tryman, we draw a relational analogy: friendswith(fox,deer)
↔ friendswith(conman, countryman).

4. Event Analogy (EA) - Two stories involve the same
frame or similar event, e.g., both story A and story B involve
a dangerous event.

5. Structural Analogy (SA) - At least two events, con-
nected with causal links, can be matched across two sto-
ries. For instance, the merchant chases an ass and the
ass runs as a result of it in story A; a tiger chases a rab-
bit and the rabbit runs away as a result in story B. For-
mally: chase(merchant,ass) & run(ass) & cause(chase,run) ↔
chase(tiger,rabbit) & run(rabbit) & cause(chase,run).

6. Moral/Purpose (MP) - Two stories have morals that are
compatible, and can be aligned with each other. For instance,
the moral of story A “Know thyself” corresponds to the moral
of story B: “Know your worth”.

Suspecting that, unlike analogy, surface similarity is easily
captured by state-of-the-art models, we also consider Literal
Similarity (LS), which indicates whether two stories use sim-
ilar words such as the same character or the same location.
For instance, lion in combat with a bull in the jungle ↔ lion
walking with a fox in the jungle.

3 Analogical Reasoning Benchmark
We collected the primary dataset by scraping Aesop Fables
from Litscape.com.1 The dataset had 237 fables and corre-
sponding single-sentence moral except for 36 fables without
record of morals. Each fable was short with most stories hav-
ing 3 - 8 sentences and 50 - 150 words. We performed two
iterations of annotation to classify single stories and annotate
analogical categories for pairs of stories.

1https://www.litscape.com/indexes/Aesop/Morals.html

https://www.litscape.com/indexes/Aesop/Morals.html


3.1 Single Story Annotation
In the first iteration, one annotator manually annotated each
fable based on its moral with one of 15 classes. 8 of the
classes were taken from the tags defined in the source web-
site, yet most of the fables were not accurately tagged. The
annotator introduced 7 more classes such that it best explains
the moral. We annotated the moral rather than the story to be
able to learn from the moral and generalize to the story. Each
story can be annotated with multiple moral classes if they
apply. This process resulted in 116 fables with 15 classes:
CONSEQUENCE, CONTENT, DANGER, EFFORT, FLAT-
TERY, FRIENDS, GREED, LAZY, LEARN, OPPORTU-
NITY, RESPECT, TRUE-NATURE, TRUST, WEAK and
WORTHINESS. The class distribution of the fables is given
in Figure 1.

Figure 1: Moral distribution of stories.

3.2 Story Pairs Annotation
In the second iteration, we introduced a framework of anno-
tation under six analogy types, described in the previous sec-
tion. Each fable could have more than one analogy type and
each analogy annotation is binary. Besides annotating the bi-
nary value (yes/no) for each analogical type, we also included
graph-like triples that justify the positive judgment for each
analogical type, like lion - friends with - ass. This supporting
evidence has to be formed as positive triples, negated triples
are not accepted. Furthermore, our guidelines dictate that
event analogy is a prerequisite for structural analogy since
the structural analogy is comprised of at least two analogical
events connected with a causal link. When two fables have
opposite morals, we consider MP analogy as false. An ex-
ample of this situation is 1: a merchant gets greedy and kills
goose, loosing his wealth, wherein 2: an ass was content with
his food and saved himself from danger. Both deal with greed,
but the first shows the consequence of greed while the second
shows a consequence of not being greedy. The full guidelines
can be found online.2

To quantify the quality of annotation we computed Inter
Annotator Agreement (IAA). We sampled three pairs of sto-
ries and three annotators were asked to annotate using the

2https://docs.google.com/document/d/
1OcFD8uSB1HzhYRlR0ubb06wda0daUOBaI7W1axAXryY/
edit?usp=sharing

Table 1: Cohen Kappa IAA Scores.

Annotator SAA DAA RA EA SA MP LS
1 VS 2 1.00 -0.5 0.39 1.00 0.00 1.00 0.39
1 VS 3 1.00 1.00 0.00 0.00 0.00 0.00 0.39
2 VS 3 1.00 -0.5 0.00 0.00 -0.5 0.00 1.00

six analogy types. We observed high agreements for SAA
and LS, while DAA and SA gave lower agreements. RA,
EA and MP were mostly close to random guessing. The pri-
mary reason for low agreement scores was that often analog-
ical annotation used implicit attributes or events not included
in the short fables, while only explicit annotation would yield
very few analogical matches. This signals a need for further
discussion and specification of the annotation guidelines and
training. The Cohen Kappa IAA score between annotators 1,
2, and 3 is shown in Table 1.

4 Methods
We identified four main tasks to learn or evaluate analogies
with the annotations. Each task is built from the results and
understanding from the previous tasks and makes use of var-
ious characteristics of the annotation process. These tasks
range from exploratory data analysis to using transfer learn-
ing to assess generality, which provide a robust pipeline for
future research and serve as the initial benchmark. In task
1, we model the high level semantic themes of the fables by
using their morals, and learn to cluster these thematic analo-
gies to their tags. In task 2, we use different techniques using
lexical and semantic structures of fables to generate candidate
analogical fable pairs and evaluate the efficacy of these gener-
ative methods. Next, in task 3, we evaluate different learning
approaches to identify the specific analogy types within pairs.
Finally, in task 4, we evaluate the generality of our methods
by trying to transfer the learned analogical relationship from
a different dataset from a potentially unrelated domain. We
present the task details, data, models, and evaluation in detail
in the following subsections.

4.1 Task 1: Moral Clustering
Task description: At the most abstract level, analogical rea-
soning can be approximated by grouping similar items to-
gether. We approach this setting by clustering fables to their
respective high-level morals. If two stories are about a fox
being greedy and a merchant being greedy, first step of de-
riving this analogy is to identify that both stories belong to
the moral tag GREED. Since morals in the dataset are one
sentence summary of the fables, we experimented with meth-
ods to cluster the morals to one of 15 classes. To build these
methods we used different characteristics of the story-moral
pairs as below:

Language model baseline: Recent breakthroughs in
NLP use contextual-language models to produce embed-
dings that represent documents. Word level language
models have shown the ability to identify analogies like
man:woman::king:queen, but work on sentence and docu-
ment level modeling has mostly focused on NLI or paraphrase
detection. We finetuned a RoBERTa [Liu et al., 2019] model
on the morals and their tags, and retrieved [CLS] hidden layer

https://docs.google.com/document/d/1OcFD8uSB1HzhYRlR0ubb06wda0daUOBaI7W1axAXryY/edit?usp=sharing
https://docs.google.com/document/d/1OcFD8uSB1HzhYRlR0ubb06wda0daUOBaI7W1axAXryY/edit?usp=sharing
https://docs.google.com/document/d/1OcFD8uSB1HzhYRlR0ubb06wda0daUOBaI7W1axAXryY/edit?usp=sharing


of the morals as a sentence representation. This yielded poor
performance as the number of classes were too large rela-
tive to the size of the dataset and some classes had very few
training instances. As an alternative, we experimented with
one-vs-one and one-vs-all classifiers. Embedded morals were
passed to a 3-layer neural network with softmax output us-
ing a cross entropy loss function. We observed a low evalu-
ation accuracy, suggesting such models are too complex for
our limited data. Finally we built 15 one-vs-all logistic re-
gression classifiers for each tag which performed better than
neural network. After 100 iterations of under sampled one-
vs-all classifiers resulted in accuracies ranging from 59% to
64% but a low F1 score of 0.3. Manual inspection of the va-
riety of the moral tags suggest these tags did not adequately
represent fables, leading to a different methodology for sub-
sequent tasks.

Frame baseline: We observed that the stories under
certain tags have similar common frames or frame se-
quences. For example, fables under FRIENDSHIP have
Travel-Collaboration and fables under TRUST have Manip-
ulation as common frames. We also noticed that stories tend
to follow certain similar sequence of actions which could
be captured with a sequence model. But to generalize the
types of these actions, we choose to use frames parsed from
FrameNet [Baker et al., 1998] using the open-sesame frame
parser [Swayamdipta et al., 2017]. To answer the question
whether the sequence of frames or even existence of frames
could differentiate the type of the fable, we built different
methods to classify morals. The simplest notion was to con-
sider the number of occurrence of a frame and bi-grams of
frames as numeric feature and learn with a neural network
model. Then we considered sequence of frames embedded
with RoBERTa as input for a Bi-LSTM model [Hochreiter
and Schmidhuber, 1997]. We considered 376 frames found in
all the stories as well as only the most common 15 frames per
tag as features.

Results: The neural network classifier to predict one of
15 tags from frame count performed poorly. When all 376
frames were considered as network features, accuracy of 0.10
was attained. Using only the most common 15 frames in-
creased accuracy slightly to 0.12. With under-sampled data,
an one-vs-all classifier performed better than random guess-
ing though F1 score was still low (0.35). Accuracies of the
selected one-vs-all classifiers are given in Table 2. We leave
it to subsequent work to analyze to what extent are the ob-
tained results influenced by noise in the frame parser, noise
in the annotations, or the usefulness of the frame representa-
tions.

4.2 Task 2: Analogical Pair Generation
Task description: Our analogy framework was built to com-
pare analogies in pairs of stories. But selection of stories to
be paired cannot be done arbitrarily. The rationale behind
choosing a pair of story has to be evaluated to be able to un-
derstand the implications of the method. Different sampling
methods could affect the ability to learn analogy from fables.
For instance, lexical methods could find the fables that share
similar words, yet might not be a great method to find analo-
gies. A semantic or structure bases method could do well with

Table 2: Accuracies of one-vs-all neural classifiers.

Tag Accuracy
Consequence 0.64

Content 0.64
Danger 0.62
Effort 0.51

Flattery 0.59
Friends 0.54
Greed 0.64

Opportunity 0.59

Table 3: Analogies of story pairs.

maximum Semantic Frames Lexical Random
Story count 44 9 10 12 13
Method average 6 2.22 1.90 3.00 1.54
SAA 1 0.00 0.00 0.08 0.08
DAA 1 0.44 0.60 0.58 0.31
RA 1 0.56 0.40 0.58 0.54
SA 1 0.22 0.10 0.25 0.00
MP 1 0.11 0.10 0.42 0.23
LS 1 0.33 0.00 0.50 0.15
SSS 1 0.56 0.70 0.58 0.23

identifying the similar buildup of stories which does not nec-
essarily need to have similar lexical features. In this task, we
define the different ways pairs could be created and methods
to evaluate their efficacy.

Language model baselines: To build story pairs, we ex-
perimented with different sampling techniques under lexi-
cal, semantic, or structural methods. We noticed that certain
stories have same characters and same interactions between
characters, which could be captured well with lexical meth-
ods. But since we are more interested in the implicit analo-
gies in the story rather than the explicitly stated similar words,
we also considered semantic and frame similarities. For each
story, we picked the most similar story using these methods
and generated 348 story pairs. We added another 348 pairs of
stories that were randomly selected to a final total of 696 story
pairs. Implemented sampling techniques were as follows:

1. Lexical - We converted each word in the fable to
Word2Vec [Mikolov et al., 2013a] embedding and cal-
culated the weighted average of the story with TF-IDF.
We used cosine similarity between these story-level em-
bedding to find the most matching fable pairs.

2. Semantic - We converted each fable to a RoBERTa [Liu
et al., 2019] embedding and retrieved the embedding
value for the [CLS] token. We used cosine similarity
on top of this embedding.

3. Frame - We parsed frames in each fable with open-
sesame and calculated sentence edit distance between
the frames to find the most similar frame sequence. Sen-
tence edit distance is adopted from word edit distance
algorithm by considering each word as a character in the
original algorithm. Frame edit distance was scaled to fit
different frame lengths. To have high variance, we kept
only frames found in story 1 as features for edit distance.



Figure 2: Fables with a story shape High - High - Low.

Story shape baseline: In addition to language models,
we considered story shapes [Reagan et al., 2016] to generate
story pairs. Story shapes are arcs generated from sentiment
scores of the fable as the story progresses. Though these arcs
do not explicitly provide the information about the plot of sto-
ries, they give an overall characteristic curve of the emotions
in the story. Table 4 lists the prototypical story shapes iden-
tified by Reagan et al.. Using the definition of these curves,
we can tag the stories which have similar arcs as similar sto-
ries. We analysed how emotions in the story change over
the duration of the story to classify the story into one of five
common story shapes, using the arc types in prior work. To
calculate emotional changes, we used the MTLabs [Dodds et
al., 2011a] vocabulary to assign happiness scores (hedono-
metric score) for each word in the story. A sliding window
of 30 words was used to calculate the average of the hap-
piness within the window and averages throughout the story
was recorded. The HIGH or LOW points are calculated as av-
erage of the beginning (first 30% of the story), middle (middle
40%) and end (last 30%) of the story. The averages of the 30-
word window typically lie between a hedonometric score of
5 to 7 [Dodds et al., 2011b] and for fables the average of all
the stories was 5.4. Based on the assumption 5.4 denotes a
neutral tone, HIGH was taken as an average of above 5.4+0.2
and LOW as an average less than 5.4-0.2.

Results: We evaluated the strength of the 3 language
model based sampling methods by assigning 0 or 1 for analo-
gies and summing up over the methods. The scores are pre-
sented in table 3. The Word2Vec-based lexical method was
found to have the highest analogy score overall. Frames based
method gives high analogical similarity for DAA. The MP
similarity, which is the most important analogy for this re-
search was high with lexical sampling. Even the highest ana-
logical scores were between 0.4 and 0.6, demonstrating that
the most similar stories under different sampling methods do
not necessarily share comparable analogies. It is also worth
noting that RA and DAA was comparatively high even for
the random sampling method, showing how any fable could
be justified to have an DAA or RA analogy mainly due the
nature of the fable stories. This cautions of a possible high
annotator bias that needs to be addressed with strict and elab-
orate annotation guidelines.

We further analyzed how the analogy types are correlated
with each other and presented in Figure 3. We observed that
MP is mostly correlated with DAA and that DAA was also

Figure 3: Correlation of analogies

Table 4: Exemplar story shapes.

Fable Arc Arc type
High - High - Low (Figure 2) Tragedy

Low - Middle - High Rags to Riches
High - Low - High Cinderella

Low - Middle - High Rags to Riches
Low - Middle - Low Oedipus

highly correlated with SA and RA. We note that the correla-
tion scores were only as high as 0.46 and most of the corre-
lations were under 0.2, showing how the analogies are not as
correlated as one would expect to be.

The classifier to learn from story shapes yielded poor ac-
curacy showing story arcs alone cannot be used to identify
similar stories.

4.3 Task 3: Analogy Type Prediction
Task description: Building up from Task 2 of generating
similar story pairs, the next natural step is to be able to pre-
dict analogy types. We could learn from the pairs of stories
generated by different sampling methods to predict whether
an analogical dimension holds for a story pair or not.

Baseline: We tuned a cross-encoder DistilRoBERTa-base
[Sanh et al., 2019] model to identify analogies. We formu-
lated the problem as binary classification and built 7 classi-
fiers: one for each of the six analogy types and one for literal
similarity.

Results: Table 5 shows the obtained results together with
the ration of the positive class for each analogical class. We
also report F1-scores to account for the imbalance of certain
classes. The cross encoder obtained high F1 performance for
SAA, DAA, and RA. Yet, it performed only slightly better
than random guessing for other analogy types. For anal-
ogy types with a balanced class distribution, the classifier



Table 5: Performance of Analogy Type Classifiers.

Analogy Positive Class Ratio Accuracy F1
SAA 0.05 1.0 1.0
DAA 0.42 0.77 0.67
RA 0.51 0.77 0.77
SA 0.08 0.66 0.4
MP 0.22 0.77 0.43
LS 0.28 0.88 0.47

was able to result in high F1 score, and analogy types with
skewed classes performed poorly. Since this experiment was
performed only on 44 annotated pairs, we are optimistic that
having a larger dataset may yield better performing models.

Below we provide an example of a story pair that has Deep
Attributive, Relational, and Event analogies as identified by
our classifier. Both soldier in story 1 and Hen in story 2 are
caring, which is a deep attributive analogy. Their care and act
of caring for horse or egg is relational and event analogies.
These stories does not share a moral purpose as in story 1 the
moral would be that fickle care causes waste, wherein story 2
it is to be careful who you care for.

Story 1: A HORSE SOLDIER took great pains with his charger.
As long as the war lasted, he looked upon him as his fellow-helper in
all emergencies, and fed him carefully with hay and corn. But when
the war was over, he only allowed him chaff to eat and made him carry
heavy loads of wood, and subjected him to much slavish drudgery and ill-
treatment. War, however, being again proclaimed, the Soldier put on his
charger its military trappings, and mounted, being clad in his heavy coat
of mail. The Horse fell down straightway under the weight, no longer
equal to the burden, and said to his master: You must now e’en go to the
war on foot, for you have transformed me from a Horse into an Ass.

Story 2: A HEN finding the eggs of a viper, and carefully keeping
them warm, nourished them into life. A Swallow, observing what she
had done, said: You silly creature! Why have you hatched these vipers,
which, when they shall have grown, will surely inflict injury on all of us,
beginning with yourself?

4.4 Task 4: Analogical Transfer Learning
Task description: To evaluate the robustness of our methods,
we design a transfer learning experiment, where the objective
is to build a baseline that can learn analogies from one dataset
and be able to sufficiently transfer that knowledge to a differ-
ent dataset.

Baselines: We experimented with the following pipelines:
1. Fable2Fable - We used the 116 fables with their tags

from our first annotation iteration to build a corpus of
544 story pairs whose morals belong to the same tag.
To created a balanced dataset, we added 544 more story
pairs that do not belong to same tag as negative sam-
ples. We finetuned a pre-trained cross encoder Distil-
RoBERTa model to predict whether the story pair be-
longs to the same tag. We evaluated the model on the 44
story pairs annotated with analogy types by predicting if
the pair of story is analogical for each of the seven types.

2. AILA2Fable - We used the AILA [Bhattacharya et al.,
2019] dataset which contains legal cases and their prece-
dent cases to build a positive and negative pairs. We
identified 640 pairs of similar cases as positive samples
and added another 640 unrelated cases as negative sam-
ples. As the legal cases are lengthy, we sampled 500

Figure 4: Accuracy of Fable2Fable.

Figure 5: F1 score of Fable2Fable.

words from the middle of the document to support the
Transformer-based cross encoder. The remaining train-
ing and evaluation setup was same as in Fable2Fable.

Results: Fable2Fable was built using DistilRoBERTa
[Sanh et al., 2019] cross encoder and we observed a substan-
tial prediction power in SAA, SA, MP, and LS, with SAA
reaching a highest accuracy of 88%, and SA reaching the
highest F1-score of 55%. Curiously, we observed that the
model predictions changed dramatically based on its train-
ing over the epochs. The changes in accuracy and F1 scores
across the epochs are given in Figures 4 and 5, respectively.
We note that SAA, SA, MP and LS performed better with
more epochs, the performance of predicting DAA and RA
analogy was affected negatively. One possible explanation
for this different behavior across classes may lie in the class
distributions, as DAA and RA are almost perfectly balanced
whereas SA, MP and LS have low positive class ratios of 0.1,
0.2 and 0.23, respectively.

For the AILA2Fable pipeline, DistilRoBERTa was not able
to learn sufficiently and we used a pre-trained model that was
built for the paraphrasing task (paraphrase-MiniLM-L6-v2).
We omit the results from this experiment, as the accuracy and
the F1-score per class were close to random guessing. This
signals that, while transferring labels for the same domain can
be achieved to some extent with pre-trained language models,
generalization from an unrelated domain is more difficult and
may require a different architecture.



5 Related Work

Analogies in cognitive science Cognitive systems typi-
cally consist of multiple phases: retrieval, mapping, ab-
straction, and representation [Gentner and Forbus, 2011].
The structural mapping engine [Falkenhainer et al., 1989;
Forbus et al., 2017] maps two structures to each other by
combining local with structural similarity, ultimately being
able to find multiple analogies for a given situation. Sim-
ilarly, the MAC-FAC (Many Are Called but Few Are Cho-
sen) [Forbus et al., 1995] system starts with a cheap retrieval
of possible analogies, followed by a a structure mapping step.
The Companion cognitive architecture [Forbus and Hinrichs,
2017], which leverages a subset of CYC [Lenat, 1995], strives
to capture analogical and qualitative reasoning, and has been
proven useful for textbook problem solving, moral decision-
making, and commonsense reasoning tasks. Case-based rea-
soning (CBR) builds novel strategies based on prior experi-
ence through four steps: retrieval of similar cases, their reuse
into a proposed solution, revision of this solution, and re-
tainment of the updated solution in the collection of prior
cases [Aamodt and Plaza, 1994]. Unlike analogical reason-
ing, CBR is not meant to be used broadly, and it is typically
meant to perform a specific task well, thus trading generality
for efficiency or other performance measures [De Mantaras
et al., 2005]. Recent work has used case-based reasoning
to answer knowledge base queries, by retrieving subgraphs
that correspond to structurally similar queries and reasoning
over them [Das et al., 2022]. The development of these cog-
nitively inspired architectures is a promising complementary
direction. While it is currently unclear how to apply these
methods on tasks based on natural language narratives such
as the ones in our work, we expect that future research may
be able to bridge this gap.

Analogies in AI and NLP Several benchmarks for analog-
ical reasoning exist in AI and NLP, e.g., based on psycho-
metric analogy tests [Mikolov et al., 2013b; Gladkova et al.,
2016]. These benchmarks focus on capturing the pairwise re-
lations between two concepts (e.g., king - man), sometimes
exemplified through the relation between another pair of con-
cepts (e.g., queen - woman). Relational analogies can be
learned to some extent from data, as shown in a recent study
[Ushio et al., 2021a], where BERT, RoBERTa, and GPT-3
have been evaluated on linguistic and cognitive assessment
datasets equivalent to analogy problems on the Scholastic Ap-
titude Test (SAT). Structural analogies have been rarely em-
ployed in recent AI and NLP work [Lu et al., 2019]. Elson
and McKeown used frames from FrameNet to build a corpus
with paraphrased Aesop fables by using static patterns. While
such paraphrased stories can be seen as analogical, we expect
that paraphrased story pairs can be easily picked up by latest
language models. Efforts that combine analogical reasoning
and language modeling exist [Ribeiro and Forbus, 2021], yet,
it is unclear how to adapt them to the task of understanding
narratives. In our study, we focus on six dimensions of anal-
ogy, thus targeting high-level structural and relational simi-
larity, and explore how language models and semantic frames
can come together to understand narratives.

6 Conclusions
This paper presented a framework for analogical reasoning
by AI techniques. Guided by Cognitive Science theories, we
devised six analogical dimensions with increasing complex-
ity: shallow and deep attribute analogy, relational analogy,
event analogy, structural analogy, and moral/purpose, and we
considered literal similarity as a baseline dimension. We an-
notated fable narratives with moral tags and the existence of
pairwise story analogy, resulting in a small comprehensive
evaluation corpus. We defined four tasks over this data: clus-
tering morals, analogical pair generation, analogical type pre-
diction, and analogical transfer, each revolving around vari-
ous analogical dimensions. We evaluated several representa-
tive AI techniques based on language models and semantic
frames on these four tasks, observing that these techniques
are applicable across tasks, yet, their ability to reason by anal-
ogy is limited, especially when this requires understanding
of complex structures. We make all code and data available
to facilitate subsequent work on analogical reasoning in AI:
https://github.com/usc-isi-i2/analogical-transfer-learning.

Based on our results, we anticipate that explicit modeling
of continuous qualitative aspects of narratives such as time,
space, and quantity, holds the promise to improve the narra-
tive understanding by AI through analogy in the future. Se-
mantic natural language systems that automatically produce
qualitative descriptions [Friedman et al., 2021] provide an in-
tuitive opening to integrate qualitative representations with
analogical reasoning models. Future work should also de-
velop scalable structure-aware methods for analogical reason-
ing, possibly by building on prior cognitive architectures. Fi-
nally, future work should aim to create an evaluation dataset
that is orders of magnitude larger, and investigate clever ways
to acquire large-scale training data for model development.
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