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Abstract
Citations are scientists’ tools for grounding their innovations
and findings in the existing collective knowledge. However,
not all citations are semantically identical. Scientists use cita-
tions at different parts of their work to convey precise infor-
mation. Hence, to understand scientific documents best, it is
crucial for machines to recognize the intent behind each cita-
tion. Current state-of-the-art methods rely on contextual sen-
tences surrounding each citation to classify the intent. In the
absence of the actual content, these approaches become unus-
able. In this work, we propose a text-free citation intent clas-
sification method. The proposed method uses a knowledge
graph built on top of the SciCite dataset to extract citation
information for publications and learn to predict citation in-
tent. We study this problem in both transductive and inductive
settings. Our experimental results show that we can achieve
a comparable macro F1 score to word embedding content-
based methods by only relying on a knowledge graph. Specif-
ically, we achieve macro F1 scores of 62.16 and 59.81 in the
transductive and inductive settings, respectively, on the link-
level SciCite dataset.

1 Introduction
Citations are the primary way of identifying past contribu-
tions and connecting progress in new publications to existing
literature. Nevertheless, not all citations indicate the same
meaning. Authors use citations sparingly with specific intent
behind them. For example, some papers are cited for provid-
ing background information in a domain, while others are
cited for using their methodologies. There are also scenarios
where the same paper is used as background information and
methodology use-case in different contexts simultaneously.
Understanding citation intent is crucial to studying scholarly
works, given the universality of using citations. In this work,
we propose a general citation intent classification method
that relies purely on structural information.

Besides helping researchers better understand the rela-
tionship among publications, citation intent analysis has
been used for studying various other aspects of scientific
works such as research domain evolution (Jurgens et al.
2018), scientific impact analysis (Small 2018), scientific
document summarization (Cohan and Goharian 2017), and
retrieving related scientific works (Ritchie 2009).
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The main three categories of citations are “Background,”
“Method,” and “Result” (Cohan et al. 2019). These cate-
gories describe the reasons behind making a scientific con-
nection, referencing a publication in another publication.
Classifying citations into these groups has traditionally re-
quired a high level of expertise in the respective scientific
domains. This constraint, combined with the high cost of
expert human labor, has resulted in highly scarce datasets,
which makes the task even more difficult.

Many feature engineering-based (Jurgens et al. 2018)
and representation learning-based (Beltagy, Lo, and Cohan
2019) methods have been proposed to classify citation in-
tent. However, most of these methods rely heavily on textual
information. As a result, they require a complex multi-stage
pipeline of parsing documents, identifying citation contexts,
and predicting citation intent (Lo et al. 2020). Besides being
prone to error propagation from various pipeline stages, the
use of these models is limited to situations where the full
text is available in a proper format.

This work introduces a pure graph-based approach to
classifying citation intent. To this end, we extend the exist-
ing SciCite dataset with multi-hop neighborhoods extracted
from the Semantic Scholar corpus. Our main idea is to
use contextual, relational patterns to make predictions, re-
linquishing the need for textual context. Given this newly
built knowledge graph (KG), we cast the intent classifica-
tion problem into the common link prediction problem on
KGs. This conversion allows us to adapt and extend widely
used KG embedding models to this problem. We study the
link prediction problem in both transductive and inductive
settings. Our experimental results show that although our
KG-based method underperforms compared to the large lan-
guage model-based approaches, it is comparable or even su-
perior to the word embedding-based methods. This finding
further signifies the importance of relational patterns for ci-
tation intent classification.

Our contributions can be described as follows:

1. Extending the SciCite dataset using the Semantic Scholar
corpus to generate a large-scale citation graph.

2. Gathering weakly labeled data to create a large-scale
knowledge graph.

3. Introducing a novel graph-based approach to citation in-
tent classification.



4. Presenting benchmarks for both transductive and induc-
tive settings.

2 Related Work
Citation Function/Intent Schemes: Many prior works have
studied the problem of creating categorical schemes for ci-
tation intent which in some works is referred to as cita-
tion function (Hernández-Alvarez and Gomez 2016). Ear-
lier works were focused on creating more fine-grained cat-
egories, going as far as defining 35 (Garzone 1998) and
12 (Teufel, Siddharthan, and Tidhar 2006) fine-grained
schemes for scientific arguments. The more recent works
however have focused on creating more concise categories.
For example, ACL-ARC (Jurgens et al. 2018) proposes a 6-
class intent categorization scheme: Background, Motivation,
Uses, Extension, Comparison or Contrast, and Future. Sci-
Cite (Cohan et al. 2019) is even more restrictive and drops or
combines small fine-grained classes to provide a more con-
cise 3-class annotation scheme: Background, Method, and
Result.

Citation Intent Classification Methods: Before the ex-
plosion of deep learning approaches, most methods relied
on a combination of hand-crafted features and classic ma-
chine learning models. For example, in one instance (Valen-
zuela, Ha, and Etzioni 2015), authors propose 12 differ-
ent features, including citation count, PageRank value, and
author overlap, and use classic machine learning models
such as SVM and Random Forest for classification. In an-
other instance (Jurgens et al. 2018), authors define pattern-
based, topic-based, and prototypical argument features and
use SVM to make predictions.

With the advent of deep learning models and the emer-
gence of large language models in recent years, represen-
tation learning-based methods have outperformed the hand-
crafted methods achieving a higher accuracy by consider-
ing the textual information. Recent works have proposed the
use of structural scaffolds (Cohan et al. 2019), BERT-based
models trained on the scientific corpus (SciBERT) (Belt-
agy, Lo, and Cohan 2019), word embedding-based ap-
proaches (Roman et al. 2021), and creating a heterogeneous
context graph based on an academic network (Yu et al. 2020)

Knowledge Graph Embedding Models: KGs are struc-
tured information repositories consisting of a set of nodes
representing entities and a set of typed edges representing
relations. Since, in most cases, the KG nodes and edges
are not attributed, KG embedding (KGE) models aim to
learn low-dimensional representations for all entities and re-
lations. The most common traditional shallow KGE meth-
ods are TransE (Bordes et al. 2013), ComplEx (Trouillon
et al. 2016), and RotatE (Sun et al. 2019). More recent
GNN-based KGE methods leverage the message-passing
scheme of GNNs, enabling more complex multi-hop reason-
ing. Examples of these methods are GCN (Kipf and Welling
2016), which leverages the spectral information for infor-
mation propagation but is limited to mono-relational KGs,
R-GCN (Schlichtkrull et al. 2018), which extends GCN to
support multi-relational KGs, and GraphSAGE (Hamilton,

Ying, and Leskovec 2017) which introduces an inductive
framework to handle unseen nodes.

3 Dataset
The SciCite dataset focuses on individual citation links and
ignores the significance of broader relational connections
and features. To overcome this issue, we construct a knowl-
edge graph by mapping each entity in the SciCite dataset
to the Semantic Scholar corpus and adding their multi-hop
citation neighborhoods. Moreover, the SciCite dataset is tai-
lored for sentence classification methods. Hence, to adapt it
to our link prediction setting, we reconstruct two datasets:
SciCiteorigin and SciCiteresplit.

3.1 Entity Mapping
We first map each paper in the SciCite dataset to the Seman-
tic Scholar corpus by matching SciCite’s IDs to Semantic
Scholar’s SHA IDs. Since a publication could have many
SHA IDs and only one Corpus ID, we then map each SHA
ID to the unique Corpus ID to extract unique entities. From
the 13,080 papers with unique IDs in SciCite, we success-
fully map 13,019 of them to valid SHA IDs in semantic
scholar, while the remaining 61 papers do not have any cor-
responding records. We believe this is due to publication re-
movals, as the SciCite dataset was created from the Semantic
Scholar corpus in 2019. After converting SHA IDs to Corpus
IDs, we end up with 13,011 unique entities and 8 duplicate
entities.

3.2 Dataset Splitting
The original SciCite dataset contains 11,020 human-labeled
samples. These samples are labeled based on citation sen-
tences by human experts. We map sentence-based sam-
ples onto a link prediction task and create two datasets:
1) SciCiteorigin which uses the same split as SciCite, and
2) SciCiteresplit which creates a new split from the whole
dataset. Table 1 showcases the statistic of these datasets.

Dataset SciCite SciCiteorigin SciCiteresplit

Level Sentence Link Link
# Samples 11,020 10,379 5,766
# Train 8,243 7,602 4,122
# Validation 916 916 822
# Test 1,861 1,861 822

Table 1: The statistic of the SciCite dataset and reconstructed
datasets.

SciCiteorigin: To make methods comparable, we use the
same validation and test sets as SciCite for this dataset and
try to keep the training set as close as possible. We convert
each publication in the SciCite dataset to a Semantic Scholar
entity using the mapped Corpus IDs and drop the contextual
sentence-level information. We assign a random unique ID
to publications without a Corpus ID. After this procedure,
we end up with a set of links for our link prediction task.



Figure 1: Overview of the extracted multi-hop KG. The set
of 0-hop nodes V0 includes all the orange nodes. The set of
1-hop nodes V1 includes all the orange and blue nodes. Sim-
ilarly, the graph could be expanded to include k-hop nodes
Vk. The annotated set on each edge represents that specific
link’s intent. Specifically, the empty set denotes that the ci-
tation link has no intent label.

Due to the removal of the contextual information, some
of the training links appear exactly the same in the test set.
Hence, we remove 641 training set samples that also appear
in the test set to prevent data leakage.

Moreover, since only one link in the test set has multi-
ple intents, we treat the link prediction problem as a multi-
class task rather than a multi-label task. In this scenario, the
multi-intent links are represented as separate samples with
the same inputs and different outputs. The multi-label varia-
tion is left to explore in future works.

SciCiteresplit: Even though we convert the SciCite dataset to
SciCiteorigin, problems, such as duplicate citations and multi-
label links, still exist. Therefore, we further tailor the SciCite
dataset to create a better link prediction dataset for graph-
based models. First, we remove all the entities, and their re-
lated samples, that do not have a mapped Corpus ID. Then,
similar to SciCiteorigin, we convert the remaining samples to
a set of links. Following this, we drop all duplicate sam-
ples. Among the remaining 6,458 unique links, 5,886 only
have one intent, 489 have two intents, and 83 have all three
intents. We remove all the multi-intent links and resplit the
dataset with ratios of 70%/15%/15% for training, validation,
and test sets, respectively.

3.3 Knowledge Graph Construction
The Semantic Scholar corpus contains more than 206 mil-
lion publications and 2.49 billion citation links. Moreover,
apart from the regular citation links, this corpus provides
partial intent labels for citations using a 3-class scheme as
follows:
1. Background: Describe a problem, topic, or concept
2. Method: Provide a method, tool, or dataset
3. Result: To make a comparison

At a sentence level, these intent labels are extracted using
the structural scaffolds model (Cohan et al. 2019). We refer

to this data as weakly labeled due to being labeled by a noisy
model rather than a human expert. Since the intent labels are
partial at a sentence level, citation links could have zero in-
tent in the absence of text or several intents in an abundance
of use cases.

We expand the SciCite dataset using the mapped entities
to construct a KG containing multi-hop neighborhoods of
those entities. Figure 1 illustrates an overview of the ex-
panded KG. This work uses the 2022-09-13 version of the
corpus downloaded from the bulk API. Formally, given the
set of mapped entities V0, the set of k-hop nodes Vk is de-
fined as

Vk = Vk−1 ∪ {y | ∃x ∈ Vk−1 : y ∈ Nx} (1)

where for a given entity x, Nx denotes all the entities that
cite or are cited by x, i.e., the set of neighboring entities.
Given the sets of unlabeled links U and weakly labeled links
L, the set of k-hop edges Ek is defined as

EU
k = {(x, y,UNK) | x, y ∈ Vk, (x, y) ∈ U} (2)

EL
k = ∪r{(x, y, r) | x, y ∈ Vk, (x, y) ∈ Lr} (3)

Ek = EU
k ∪ EL

k (4)

where r ∈ {Background, Method, Result} and Lr denotes
the set of all weakly labeled links with label r. Consequently,
given the sets of k-hop nodes Vk and edges Ek, the extracted
k-hop KG, Gk, is defined as

Gk = (Vk, Ek) (5)

The specific statistics of the extracted KG and the original
semantic scholar corpus are reported in Table 2. Although
we extract G2, given its scale, we opt to run our current ex-
periment only on G1 and leave the larger-scale experiments
for future works.

4 Method
Throughout the rest of this work, for simplicity, we use the
term publication to denote all types of academic publica-
tions, e.g., books and papers. Moreover, we use the terms ci-
tation and reference to denote incoming and outgoing links,
respectively.

4.1 Features Engineering
We propose representing publications through their refer-
ences, citations, and graph-based features. More specifically,
we extract the in-degrees and out-degrees of citations (or ref-
erences), background links, method links, and result links.
As a result, each paper is represented with an 8-dimensional
feature vector, 4 for each in-degree and out-degree feature.
For the publications where the content is unavailable, the
out-degree intent-based features will be zero since those fea-
tures are based on the noisy sentence-level model that the
Semantic Scholar uses. However, the in-degree features may
not be zero as long as the citing paper’s content is available.
For the new publications, i.e., unseen nodes in the induc-
tive setting, the only known non-zero feature is the reference
count.



Dataset # Nodes # Citation Links # Background # Method # Result

Zero-Hop (G0) 13,011 10,733 5,479 4,403 1,335
One-Hop (G1) 5,862,261 119,776,090 39,202,086 16,830,665 16,830,665
Two-Hop (G2) 57,535,880 1,621,293,902 467,860,523 121,877,053 35,283,718

Semantic Scholar 206,159,629 2,495,513,737 643,955,457 169,472,164 45,779,793

Table 2: Statistics of the extracted KGs along with the original Semantic Scholar corpus

We normalize the reference and citation features by a bi-
ased log factor defined as

h̄x = log10(hx + 1 + α) (6)
where α is a bias hyperparameter. We specifically set α =
−0.9 to get a normalized value of −1 for zero-reference and
zero-citation situations.

Moreover, we normalize the non-zero in-degree intent-
based features into a [0, 1] probability distribution as fol-
lows:

h̄x =
hx

hBackground + hMethod + hResult
(7)

The same normalization step is used for out-degree features
separately.

4.2 Multi-Hop Link Prediction (MHLR)
Transductive and inductive settings are the most common
link prediction evaluating schemes for KGs. The main dif-
ference between these two settings is having a fixed set of
nodes in both the training and evaluation phases (transduc-
tive) versus allowing the addition of unseen nodes in the
evaluation phase (inductive). This work refers to citation in-
tent prediction on unseen publications as the inductive set-
ting, whereas the transductive setting refers to citation intent
prediction on already seen publications.

We propose an adaptable graph-based model for citation
intent prediction in both the transductive and inductive set-
tings. The primary basis of this approach is that a node, i.e.,
publication, could be represented as a combination of the
neighboring nodes’ representations. Let h(0)

x be the extracted
feature vector for any arbitrary node x. We calculate the rep-
resentation of an arbitrary node v at layer l+1 of a multilayer
model as

h
(l+1)
Nv

=
1

|Nv|
∑
u∈Nv

h(l)
u (8)

h(l+1)
v = σ(W (l+1)[h(l)

v ∥h(l+1)
Nv

]) (9)
where σ is a non-linear function. Throughout our experi-
ments, we specifically use ReLU to introduce non-linearity.
Given the node representation from a L-layer model and a
link (u, v), we calculate the logit values as

p = MLP([h(L)
u ∥h(L)

v ]) (10)
where p ∈ RC contains the unnormalized logits for each
class and C is the set of all classes. The predicted class c is
then calculated as

argmaxc sigmoid(p). (11)

The main disadvantage of the inductive settings is that the
unseen nodes only have one available feature, i.e., reference
count. This absence of information makes the task extremely
difficult, as the feature vectors are highly sparse. However,
our model tries to diminish this effect by using the message-
passing scheme, as defined in Equation 9, to aggregate infor-
mation through connected entities, i.e., cited papers, creating
a denser representation for the unseen nodes.

All our models are trained using the cross-entropy loss
defined as

ln = − log
exp(pyn

)∑|C|
i=1 exp(pi)

(12)

where and px is the logit value for class x given the predic-
tion vector p.

4.3 Baselines
Knowledge Graph Embedding Models: Traditional KGE
models consist of two shallow embeddings as entity and re-
lation encoders and a score function as a decoder to predict
the likelihood of a link. These models are trained in a con-
trastive way by masking either one of the entities in a given
triplet (head, relation, tail) and sampling a set of negative
entities, contrasting the positive entity.

Since the traditional KGE methods rely on shallow em-
beddings for encoding entities and relations, they can only
be used in the transductive setting and cannot operate on un-
seen nodes. For our experiments, we use the available imple-
mentations of TransE, ComplEx, and RotatE in the DGL-KE
toolkit (Zheng et al. 2020). In the evaluation phase, we cal-
culate the likelihood of all different relation types for each
link and consider the highest likelihood as the model’s intent
prediction.

Hybrid Models: To increase the reasoning power of the tra-
ditional KGE models, we devise a two-stage approach based
on multilayer perceptron (MLP). We first use the traditional
KGE models to learn embeddings for entities and relations.
Then, instead of relying on the produced likelihood scores,
we concatenate the vectors of two entities and pass that
through an MLP to get logit values. Formally, given a link
(u, v) and their respective learned representation (zu, zv),
we calculate the logit values as

p = MLP([zu∥zv]) (13)

where p ∈ RC contains the unnormalized logits for each
class. The predicted class c is then calculated as

argmaxc sigmoid(p). (14)



SciCiteorigin SciCiteresplit

Method Setting Accuracy Precision Recall F1 Accuracy Precision Recall F1

Random Universal 33.05 33.05 33.83 31.22 32.99 32.88 33.85 31.89
Most Common Universal 53.57 17.86 33.33 23.26 42.63 14.21 33.33 19.93

TransE Transductive 40.41 37.09 37.81 36.52 39.57 35.96 35.70 35.59
ComplEx Transductive 49.01 44.11 37.94 33.30 40.25 41.85 35.64 28.78
RotatE Transductive 23.54 32.97 32.74 22.98 28.12 36.88 36.31 27.88
TransE + MLP Transductive 54.16 45.77 45.21 45.24 51.93 45.68 44.16 43.89
ComplEx + MLP Transductive 55.72 47.80 45.19 44.77 48.64 43.46 43.15 43.24
RotatE + MLP Transductive 56.37 48.79 46.15 46.55 51.81 46.92 45.46 45.63
Random + MLP Transductive 49.60 30.58 35.17 32.42 45.35 30.26 35.83 32.78

Infersent-KMeans Universal - 58 64 60 - - - -
Infersent-HDBSCAN Universal - 57 63 58 - - - -
Glove-KMeans Universal - 51 56 51 - - - -
Glove-HDBSCAN Universal - 52 57 52 - - - -

Ours (MHLR) Transductive 66.20 62.18 56.13 57.88 66.10 63.69 61.33 62.16
Ours (MHLR) Inductive 63.94 58.36 55.05 56.13 64.17 59.86 59.83 59.81

Structural Scaffolds Universal - 84.7 83.6 84.0 - - - -
SciBERT Universal - - - 85.49 - - - -

Table 3: Intent classification results on SciCiteorigin and SciCiteresplit datasets. All the metrics are macro averaged.

Natural Language Processing Models: We include the re-
ported results of several state-of-the-art Natural Language
Processing (NLP) methods. Specifically, we include results
from the word embedding-based methods such as Infersent-
KMeans, Infersent-HDBSCAN, Glove-KMeans, and Glove-
HDBSCAN (Roman et al. 2021), BiLSTM-based method
Structural Scaffolds (Cohan et al. 2019), and large language
model-based method SciBERT (Beltagy, Lo, and Cohan
2019). All these methods make use of textural information.

5 Experiments

In this section, we report our experimental results on both
SciCiteorigin and SciCiteresplit datasets. All the graph-based
experiments are carried out on the G1 KG. For the MHLR
method, in both transductive and inductive settings, we use a
1-layer variation on top of the normalized features extracted
as described in Sections 4.1. For traditional KGE methods,
we tune their hyperparameters as described in Appendix
A.1 and train them using the hyperparameters showcased in
Table 4. For hybrid methods, the KGE component is first
trained to generate node features using the hyperparameters
described in Table 4. Then, the MLP component is trained
using the procedure described in A.2 to predict the citation
intent. To control for the effect of the pre-training using
traditional KGE models, we also run a variation with ran-
domly initialized node features and designate it as “Random
+ MLP.” For the NLP models, we use the reported results
to compare our models on the test set-aligned SciCiteorigin
dataset. Finally, we also include the results from random and
most common class predictions as sanity checks.

5.1 Results

Table 3 illustrates our experimental results on both graph-
based datasets. As evident from Table 3, traditional KGE
methods perform poorly on both datasets, only slightly beat-
ing the random baseline on the macro F1 metric. However,
when combined with MLP models, all exhibit significant
performance boost, up to more than 100% in the case of Ro-
tatE. Moreover, the control “Random + MLP” experiment
showcases very similar results to the random baseline, in-
dicating the importance of both components for the hybrid
model to perform well. Furthermore, it is evident that the
reasoning power of shallow traditional KGE models is not
enough to capture the complexity of this task, and we re-
quire models with more reasoning power.

Our method achieves 57.88 and 62.16 macro F1 scores
on SciCiteorigin and SciCiteresplit datasets. Furthermore, the
inductive results showcase the resilience of our approach
in an out-of-distribution setting, losing less than 1% of the
F1 score. Compared to previously reported results (Roman
et al. 2021), our model achieves superior performance to
Glove-based models while slightly lagging behind Infersent-
based models. The significance of these results is that we
show structural and relational information could be used
to achieve relatively high performance without using tex-
tual information. Moreover, although our models underper-
form compared to language model-based approaches such as
Structural Scaffolds and SciBERT, we showcase interesting
future directions for combining graph-based and NLP-based
methods.



(a) The number of different citation intents.

(b) The percentage of different citation intents.

Figure 2: The statistic of citation intent for all publications
in the Semantic Scholar corpus.

6 Analysis

6.1 Temporal Analysis

This analysis studies the relationship between the time that
has passed since publication and citation intent. We hypoth-
esize that a paper is more likely to be cited as “Result” or
“Method” right after its publication, and as time passes, it
will be more likely to be cited as “Background.” If this is
proven accurate, we could get a relatively strong signal from
the temporal information for each citation. We plotted the
years after publication against intent counts and ratios for all
papers in the semantic scholar corpus to test our hypothesis.
Figure 2a and 2b illustrate the results of our analysis. As evi-
dent from these figures and contrary to our original hypothe-
sis, we find out that the ratio of intent classes almost stays the
same as time passes with insignificant fluctuations. As a re-
sult, using temporal information in our models is unlikely to
provide any significant improvement. Note that these results
should be taken in with a grain of salt as all these extracted
weak labels are generated by another model that could po-
tentially be biased. Hence, it should not discourage further
analysis or studies of temporal information for citation intent
classification.

(a) Publication features (both sides)

(b) Averaged neighborhood features (both sides)

Figure 3: The calculated MI values for publication features
and averaged neighborhood features.

6.2 Mutual Information Analysis
In this analysis, we study the quality of the engineered fea-
tures as described in Section 4.1 concerning the weakly la-
beled intent classes. To this end, we use the well-known mu-
tual information (MI) (Kraskov, Stögbauer, and Grassberger
2004) measurement to quantify the importance of each fea-
ture. Formally, the MI between two discrete random vari-
ables X and Y is defined as

I(X,Y ) =
∑
y∈Y

∑
x∈X

PX,Y (x, y) log(
PX,Y (x, y)

PX(x)PY (y)
) (15)

where Y is the value space for Y , X is the value space for
X , PX,Y is the joint probability distribution, and PX and PY



(a) Features before normalization (b) Features after normalization

Figure 4: The t-SNE visualizations for the unnormalized and normalized features.

are the marginal probability distributions. Note that MI is a
non-negative value, and higher values indicate more correla-
tion between the two random variables. For our analysis, we
calculate MI for both sides of the 5,886 unique citation links
in the SciCiteresplit dataset. Moreover, to study these features
in the graph context, we also calculate MI for the average
of these features over the neighborhood of each publication,
i.e., all citing and cited publications, from both sides of the
citation links. Figures 3a and 3b present the results of our ex-
periments. As evident from these results, the neighborhood-
averaged features generally show stronger connections to the
target variable, which is aligned with better results that we
achieved using our proposed approach.

6.3 Feature Quality Analysis
In this analysis, we study the effect of normalization as
described in Equations 6 and 7. To this end, we project
the extracted features of the 5,886 unique citation links in
the SciCiteresplit dataset to a 2-dimensional space using t-
SNE (Van der Maaten and Hinton 2008). Figure 4a and 4b
illustrate the projected space for the unnormalized and nor-
malized features, respectively. As evident from Figure 4a, it
is challenging to distinguish different intent types in the un-
normalized space. However, after normalization, as evident
from Figure 4b, we can see that the “Method” intention more
or less creates a distinguishable cluster. This result shows
that the use of normalization is potentially helpful for the
model. Further studies on different types of normalization
and their effects are left for future work.

7 Conclusions and Future Work
In this work, we first introduced an expansion to the Sci-
Cite dataset by extracting scholarly information from the
Semantic Scholar corpus and creating an extended cita-
tion graph. Then, we gathered a large-scale weakly labeled
dataset to augment the extracted citation graph with citation
intents and create a multi-relational knowledge graph. Fol-
lowing this, we adapted the sentence-based intent classifi-
cation into a citation-based link prediction task on graphs.

We then introduced a set of engineered graph-based and
citation-based features. Built on top of these features, we
introduced a graph-based multi-hop reasoning approach for
the newly introduced task. Our approach achieves 62.16
and 59.81 macro F1 scores in the transductive and induc-
tive settings, respectively. The result in the inductive set-
ting showcases the robustness of the proposed approach
in the information-deprived out-of-distribution environment.
Moreover, compared to NLP-based models, we reached a
comparable performance to, and in some cases outperform,
the word embedding-based methods that rely on contextual
sentences to make predictions. These results further signify
the strong signal in relational information and highlight the
importance of future analysis and studies in this domain.

For future works, one straightforward idea is to extend
the knowledge graph with more scholarly information, such
as venues, institutions, and fields of study. There already
exist some open repositories such as OpenAlex (Priem,
Piwowar, and Orr 2022), and Microsoft Academic Graph
(MAG) (Wang et al. 2020) that contain this information.
Another direction is further investigation into the tempo-
ral signals. Finally, since the link-level intent classification
has its natural limitations due to ignoring the contextual in-
formation for each citation, a fusion between graph-based
and NLP-based methods could prove superior to the current
state-of-the-art model, i.e., SciBERT.
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A Hyperparameters
A.1 Knowledge Graph Embedding
We use a randomized search to tune our models and
find near-optimal hyperparameters using the following
ranges: embedding dimensions ∈ {50, 100, 200}, learn-
ing rate ∈ {0.03, 0.1, 0.3}, regularization coefficient ∈
{0.0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, number of negative sam-
ples ∈ {64, 128, 256, 512, 1024}, α ∈ {0.25, 0.5, 1}, γ ∈
{6, 12, 24}. Note that α and γ are the adversarial tempera-
ture and the margin value (RotatE-only), respectively.

Hyperparameter TransE ComplEx RotatE

embedding dimension 100 100 50
learning rate 0.1 0.3 0.1

regularization coefficient 1e-6 1e-6 1e-6
negative samples size 128 512 64

α 0 0.25 1
γ - - 6

Table 4: Hyperparameters of KGE algorithms.

A.2 Multilayer Perceptron
To simplify the model tuning process, we find the opti-
mal hyperparameters of “ComplEx + MLP” on SciCiteorigin
using grid search and reuse them for the rest of our ex-
periments. Specifically, we run a grid search over the fol-
lowing ranges: number of layers ∈ {0, 1, 2, 3}, dropout ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5}, dimension ∈ {32, 64, 128}, The
optimal hyperparameters are as follows: number of layers
= 2, dropout = 0.2, and dimension = [64, 32]. We use
ReLU as the activation function for all layers.


