
17266 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

Integrating Pre-Trained Language Model With
Physical Layer Communications

Ju-Hyung Lee , Dong-Ho Lee, Joohan Lee , and Jay Pujara

Abstract— The burgeoning field of on-device AI
communication, where devices exchange information directly
through embedded foundation models, such as language
models (LMs), requires robust, efficient, and generalizable
communication frameworks. However, integrating these
frameworks with existing wireless systems and effectively
managing noise and bit errors pose significant challenges. In this
work, we introduce a practical on-device AI communication
framework, integrated with physical layer (PHY) communication
functions, demonstrated through its performance on a link-level
simulator. Our framework incorporates end-to-end training
with channel noise to enhance resilience, incorporates vector
quantized variational autoencoders (VQ-VAE) for efficient
and robust communication, and utilizes pre-trained encoder-
decoder transformers for improved generalization capabilities.
Simulations, across various communication scenarios, reveal
that our framework achieves a 50% reduction in transmission
size while demonstrating substantial generalization ability and
noise robustness under standardized 3GPP channel models.

Index Terms— Physical layer communications, language model,
VQ-VAE, natural language processing (NLP), link-level simula-
tion.

I. INTRODUCTION

THE increasing capabilities of mobile devices and the
advancements in large language model (LLM), particu-

larly foundation models, have paved the way for a new era
of on-device artificial intelligence (AI).1 This paradigm shift
allows devices to possess their own AI capabilities, enabling
tasks such as real-time translation, personalized recommenda-
tions, and even autonomous driving, all while ensuring privacy
and efficiency [1], [2], [3], [4].

Manuscript received 14 February 2024; revised 9 June 2024;
accepted 17 August 2024. Date of publication 9 September 2024; date
of current version 13 November 2024. This work was supported in part by
the National Science Foundation (NSF) under Grant 2008443. The associate
editor coordinating the review of this article and approving it for publication
was B. Guler. (Corresponding author: Ju-Hyung Lee.)

Ju-Hyung Lee was with the Ming Hsieh Department of Electrical and Com-
puter Engineering, University of Southern California (USC), Los Angeles,
CA 90007 USA. He is now with Nokia, Sunnyvale, CA 94085 USA (e-mail:
juhyung.lee@outlook.com).

Dong-Ho Lee and Jay Pujara are with the Information Science Institute,
University of Southern California (USC), Los Angeles, CA 90007 USA
(e-mail: dongho.lee@usc.edu; jpujara@usc.edu).

Joohan Lee is with the Ming Hsieh Department of Electrical and Computer
Engineering, University of Southern California (USC), Los Angeles, CA
90007 USA (e-mail: joohanl@usc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2024.3452481.

Digital Object Identifier 10.1109/TWC.2024.3452481
1Throughout this paper, we will use the term “on-device AI” and “on-device

AI/language model (LM)” interchangeably to refer to a foundation model or
a language model deployed at both transmitter (TX) side and receiver (RX)
side in a distributed manner.

On-device AI communication enables devices equipped
with advanced foundation models like LMs to directly
exchange information, forming a network of distributed intel-
ligence. This distributed AI-to-AI communication requires
efficient and accurate transmission of information between
devices. The “encoded representation” generated by the
AI/LLM at the TX side (called AI-Src-Enc) needs to be
reliably transmitted and accurately interpreted as “decoding
input” by the AI/LLM at the RX side (called AI-Src-Dec)
[5].

However, seamlessly integrating this novel technology with
existing communication infrastructure presents a significant
challenge. Maintaining backward compatibility is a crucial
requirement in wireless communication systems, allowing
devices designed for older networks (e.g., 4G and 5G) to
operate seamlessly with newer technologies (e.g., 6G). This
interoperability ensures a smooth transition between networks,
such as handover and roaming, enhancing user experience.
For on-device AI communication, ensuring backward com-
patibility is still essential, enabling existing communication
infrastructure to support this new paradigm without requiring
major modifications. Thus, it is required to integrate the
on-device AI model application into wireless communication
systems, ensuring they adhere to existing legacy protocols for
seamless interoperability [6].

Furthermore, effective on-device AI communication
demands several key qualities: (1) Robustness: The system
must be resilient to communication errors (e.g., bit error)
and noise (e.g., channel fading) inherent in dynamic wireless
environments; (2) Efficiency: The system must efficiently
compress and transmit data while maintaining accuracy
and fidelity; and (3) Generalization Capability: The system
should be able to handle diverse inputs and adapt to various
communication scenarios. Meeting these requirements
presents another challenge, requiring novel approaches in
system design and optimization.

A. Related Works

1) Semantic Communication: Semantic communication,
which focuses on effectively transmitting semantic (mean-
ingful) information rather than merely receiving individual
symbols or bits [7], is the most relevant research direction for
distributed AI-to-AI communications. In order to accomplish
this, semantic communication systems leverage neural network
(NN) at both the TX and RX to extract and decode the
semantic information. Semantic communication research can

1536-1276 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1947-0283
https://orcid.org/0009-0005-6959-7516

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17267

be classified based on the types of data they utilize, including
image [8], [9], [10], video [11], [12], [13], and speech/text
data [14], [15], [16]. These works pioneered the inclusion
of AI in source coding within transceivers, optimizing joint
source-and-channel coding (JSCC) under specific noisy chan-
nels and data distributions.

However, such semantic communication framework poses
significant challenges for practical application in on-device
AI communication. Firstly, it demands major modifications
to existing legacy communication protocols (e.g., 5G-NR pro-
tocol), distinguishing it from practical distributed AI-to-AI
communication systems. JSCC necessitates that both channel
coding and communication modules be modified and trainable,
requiring major modifications in existing legacy communica-
tion protocols that are impractical in conventional wireless
communication systems.

Secondly, much of the existing research assumes ideal chan-
nel conditions (e.g., additive white Gaussian noise (AWGN))
and bases analysis on information theory and symbol-level
transmission. This overlooks the complexities of non-ideal
(realistic) channel conditions and the necessity for link (or
system)-level analysis and practical bit-level transmission.

Advancing the pioneering efforts in semantic communica-
tion towards practical application in on-device AI commu-
nication necessitates two critical components: (1) Reliable
communication systems need to seamlessly operate with exist-
ing infrastructure. This typically involves interacting with
various physical-layer communication function modules like
mappers, forward error correction (FEC), and orthogonal
frequency-division multiplexing (OFDM), each serving a dis-
tinct purpose. Therefore, it becomes necessary to integrate
AI-Src-Enc and AI-Src-Dec within the transceiver system,
with the operational parameters of modules compatible with,
or analogous to, those in 5G-NR physical-layer modules. (2)
Efficient communication systems should be able to compress
the output of AI-Src-Enc and accurately decode the input of
AI-Src-Dec. Developing an effective compression approach
is crucial for reducing the size of semantic messages while
retaining their essential information.

Fig. 1 shows the difference between semantic communica-
tion and on-device AI communication systems.

2) Pre-Trained Language Model: Recent studies on text
semantic communication exploit transformer architectures [17]
to extract semantics at the TX and recover the original
information at the RX [14], [18]. However, such frameworks
may have the following challenges: (i) training an end-to-
end (E2E) semantic communication pipeline requires a huge
computational effort due to the many randomly initialized
parameters of semantic encoder/decoder to be trained on;
(ii) difficulty in handling out-of-vocabulary (OOV) since they
only use a set of whitespace-separated tokens in the train-
ing data. General-purpose communication systems should
be able to effectively handle any data, including out-of-
domain (OOD) data that lies outside the training data used
to develop the framework. This necessitates using pre-trained
language models with superior generalizability, allowing them
to perform well even when encountering unforeseen data
variations.

Pre-trained language models, which have been extensively
trained on vast web datasets, are revolutionizing the field of
natural language processing (NLP) [19], [20]. These models,
often referred to as “foundation models”, possess the ability
to effectively generalize even to data where they have not
specifically been trained for [2]. Their capabilities are a result
of leveraging transfer learning and scaling techniques. Transfer
learning involves utilizing knowledge acquired from one task
and applying it to another [21]. In the context of deep learning,
pre-training is the prevailing approach to transfer learning,
where a model is initially trained on a surrogate task and
subsequently fine-tuned to adapt to the downstream task of
interest.

B. Contributions

To design and evaluate a practical and widely applicable
on-device AI communication framework, we focus on three
key questions:
Q1: How can we integrate a pre-trained language model in

practical physical layer (PHY) communication systems
and evaluate its reliability in realistic network scenario?

Q2: How can we efficiently compress the output of the AI-
Src-Enc and accurately decode the noisy input of the RX
AI-Src-Dec?

Q3: How can we leverage the knowledge gained from a large
dataset to build a general-purpose encoder/decoder for
system-wide application?

Our main contributions, which address these challenges, are
summarized as follows:
• We integrate a language model with the link-level simula-

tor, NVIDIA Sionna [22], incorporating 5G-NR PHY
communication functions (e.g., Polar channel coding and
QAM mapper). We evaluate its performance on a channel
that contains not only noise but also delay dispersion
(e.g., 3GPP CDL-family channel), seeing the efficacy of
on-device AI communication. Furthermore, we propose
a noise-tuning method to optimize its reliability. This
addresses Q1.

• Converting on-device AI information (e.g., output of
AI-Src-Enc and input of AI-Src-Dec) into bit-level infor-
mation often increases data load. Additionally, even
minor bit errors, induced by channel noise, can greatly
hinder communication. Addressing this, we propose a
novel approach that leverages vector quantization tech-
niques [23] for efficient compression and decoding of
on-device AI information. This approach transforms
high-dimensional vectors into discrete data via a code-
book, significantly reducing transmission overhead even
while mitigating the impact of bit errors (i.e., robustness
against channel noise). This addresses Q2.

• We incorporate encoder-decoder transformers into E2E
on-device AI communication systems, initializing them
with pre-trained weights. This approach reduces the
reliance on channel-specific and data distribution-specific
optimization, thus enhancing the system’s generalizabil-
ity; This addresses Q3. In particular, we employ a
pre-trained encoder-decoder transformer (BART [24]) to

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17268 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

Fig. 1. Overview of semantic communication systems and on-device AI/LM communication system.

initialize the parameters of AI-Src-Enc/Dec so that the
pipeline itself requires little or no computational effort
and use a pre-trained tokenizer to effectively handle OOV
so that our pipeline can be generalized to any other text.

• We release source code for the experiments to promote
reproducible ML research in wireless communication.2

C. Paper Organization and Notation

This paper is organized as follows: Sec.II provides the
background information on two key concepts: on-device AI
communication and vector quantised variational auto encoder
(VQ-VAE) After presenting a detailed system model for the
on-device AI communication systems in Sec.III, Sec. IV
provides comparison results and ablation studies to assess
the contribution of each of our proposed approaches, with
a specific emphasis on the accuracy and efficiency of text
transmission. Then, we also present an in-depth analysis of
our proposed noise-tuning methods, followed by concluding
remarks in Sec. VI.

Notation: Random variables are denoted by capital italic
font, e.g., X, Y , with realizations x, y, respectively. I(X; Y),
p(y|x) and p(x, y) represent the mutual information, condi-
tional probability, and joint probability distribution of the two
random variables X and Y . Multivariate random variables are
represented with capital bold font, e.g., Y = [Y0, Y1]T . Vectors
are represented using a lowercase bold font, e.g., y. We use
RD×1 to represent the D-dimensional space of real-valued
vectors. We also use ∥ · ∥ to denote the L2-norm, which is an
Euclidean norm.

II. BACKGROUND

A. On-Device AI (Distributed AI-to-AI) Communication

On-device AI (distributed AI-to-AI) communication refers
to a paradigm where AI models, e.g., LM, are embedded
locally within devices and communicate with each other
over a network. This decentralized approach allows devices

2https://github.com/abman23/on-device-ai-comm

to exchange complex, context-rich information, leveraging
the capabilities of AI models to facilitate personalized and
intelligent interactions without relying on centralized servers.

In the process of AI-to-AI communication using via LM,
the TX side initially encodes the input sequence. This encoded
data is then sent across through the physical layer to the
RX side, where it is decoded back into its original form.
To enable this, several key components are required. Both AI-
Src-Enc at the TX and AI-Src-Dec at the RX must employ
a shared tokenizer and embedder. These tools play a pivotal
role in accurately encoding and decoding the data. Initially,
the tokenizer divides the input sequence into discrete tokens.
Subsequently, each token is transformed into an embedding
representation through the embedder. This series of mapped
embeddings is then input into the encoder to generate a
transmittable representation. At the RX end, to reconstruct the
original sequence from this representation, the same embedder
is used to deduce the token index, which is then converted back
to the corresponding token using the tokenizer.

The transmittable representation itself is a high-dimensional
vector made up of floating point numbers. For its transmission
via the physical layer, this vector needs to be converted into
a form of bit-level information, suitable for digital transmis-
sion. However, these floating-point numbers are particularly
susceptible to bit-flips, which can occur due to noise within
the physical layer as mentioned in Q2. For instance, a 32-bit
floating-point number representing 1.0 could change to infinity
with just one bit-flip (bit error) in the second position, leading
to a significant decline in transmission accuracy [25].

B. Vector Quantized Variational Autoencoders (VQ-VAE)

VQ-VAE are a version of variational autoencoders [26],
distinguished by their use of vector quantization techniques
to effectively encode information into discrete latent represen-
tations [23]. At the core, an autoencoder is a neural network
that identifies latent spaces, which are complex and non-linear
functions derived from the data. This neural network architec-
ture is divided into encoder and decoder. The encoder’s role
is to process and transform the input data into a latent vector

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17269

representation. Following this, the decoder is tasked with the
accurate reconstruction of the original data, using only the
latent vector representation provided by the encoder. Unlike
traditional approaches where this latent representation is con-
tinuous [26], the VQ-VAE creates discrete latent representation
by incorporating a discrete codebook. This codebook, forming
an array of vector entries each assigned a specific index,
is utilized to discretize the latent space within the autoencoder.
By implementing this strategy, the VQ-VAE facilitates the
learning of a discrete latent space that effectively captures key
features of the data. The resultant latent representation in this
model is a sequence of integer indices corresponding to the
codebook entries, which not only allows for more efficient
data compression but also maintains a level of reconstruction
quality that is comparable to traditional methods.

III. ON-DEVICE AI COMMUNICATION SYSTEMS

A. Problem Description

Consider a sentence s that maps to a symbol stream x
using the AI-Src-Enc SE(·), vector quantization QE(·; Z), and
channel encoder CE(·) as follows:

x = CE (QE (SE (s) ;Z)) , (1)

where Z is the shared codebook. The symbol stream x passes
through a physical channel h with noise n ∼ CN (0, σ2

n),
resulting in the received signal y:

y = hx + n. (2)

At the receiver (RX) end, the received signal y is processed
by the channel decoder CD(·), vector dequantizer QD(·; Z),
and AI-Src-Dec SD(·) to estimate the original sentence ŝ:

ŝ = SD (QD (CD (y) ;Z)) . (3)

The architecture of the communication system is illustrated
in Fig. 2, where the transmitter (TX) consists of the AI-Src-
Enc SE(·), vector quantizer QE(·; Z), and channel encoder
CE(·), and the receiver (RX) includes the channel decoder
CD(·), vector dequantizer QD(·; Z), and AI-Src-Dec SD(·).
Both TX and RX share the same codebook Z.

At the TX end, the sentence s is encoded into a vector
representation r by SE(·), mapped to discrete indices t via
QE(·; Z), and encoded into the symbol stream x by CE(·).
This process adds redundancy to ensure reliable detection and
correction of bit errors.

Conversely, at the RX end, the channel decoder CD(·)
decodes the received signal y, the vector dequantizer QD(·; Z)
recovers the discrete indices t̂ into vector representation r̂, and
the AI-Src-Dec SD(·) decodes this to recover the estimated
sentence ŝ.

On-device AI/LM = (New) Lossy Source Coding: While
conventional (lossy) source coding focuses on compressing
the source input by ensuring statistical similarity between the
original and reconstructed signals (s and ŝ), AI-Src-Enc takes
a different approach. The system aims to minimize lexical
errors (i.e., lexical similarity) and semantic errors (i.e., seman-
tic similarity) while also reducing the number of bits/symbols
retrieved from AI-Src-Enc, thereby achieving compression.

In particular, it prioritizes compressing the embedding size
(i.e., the dimensionality of r) while maintaining, or even
enhancing, both lexical and semantic similarities between the
original and reconstructed data.

While leveraging advanced traditional PHY communica-
tion system’s techniques (e.g., multiple-input multiple-output
(MIMO), OFDM, channel coding, etc.) which prioritize
achieving low bit error rate (BER) (or symbol error rate
(SER)), on-device AI/LM communication system focuses
more on preserving the meaning between the original and
reconstructed data to ensure successful distributed AI-to-AI
(inter-AI) transmission. To this end, we design and evaluate
our E2E on-device AI communication system within the
context of bit-level PHY communication transmission to see
its E2E performance in realistic scenarios.3 Our rationale for
this system is to preserve the meaning and context of the data,
even in the presence of realistic channel noise and bit errors.

B. System Model

1) AI-Source-Encoder and AI-Source-Decoder: Both the
AI-Src-Enc SE(·) and AI-Src-Dec SD(·) are constructed from
a series of 6 transformer layers [17]. Each of these layers
integrates a self-attention mechanism, positional encoding, and
a densely connected layer, fortified by residual connections.
Notably, while they share a similar foundational architec-
ture, the specific manner in which the self-attention operates
diverges between the encoder and decoder components. This
distinction in the self-attention mechanism ensures specialized
processing tailored to the unique demands of both encoding
and decoding tasks. The encoder employs a fully-visible self-
attention strategy, granting the model the capability to focus
on any token of the input while the decoder leverages an
auto-regressive self-attention mechanism, limiting the model’s
attention solely to previous outputs, which is more appropriate
for the streaming paradigm in which the decoder operates.
These architectures can be pre-trained on a large scale corpus
by corrupting documents and computing the cross entropy loss
between the decoder’s output and the original document to
learn the model generalizable knowledge [24].

Here, we employ such pre-trained checkpoints
(BART-base [24]) and use the encoder and decoder
weights to initialize the weights of SE(·) and SD(·)
respectively. For a more detailed understanding of the
en/decoder’s operation, both SE(·) and SD(·) share the
pre-trained embedding E and the pre-trained tokenizer T .
Once the sentence s is given to SE(·), T tokenizes s
into tokens st = [st1 , st2 , . . . stn] and maps each token to
embedding se = [se1 , se2 , . . . sen

] by E . Then, SE(·) encodes
se into hidden states r = [r1, r2, . . . rn] ∈ Rn×dr through
multiple transformer layers, and passes it to channel encoder

3In this study, our primary focus is on PHY layer functions, and we do not
address MAC (or higher) layer functions, like automatic repeat request (ARQ)
and hybrid automatic repeat request (HARQ), which aim to ensure error-free
transmission. It is important to note that in certain network scenarios—where
simpler transmission is required, where transmitted data are latency-sensitive
and cannot afford the delay caused by HARQ, or in broadcast situations
where HARQ is not applicable, such as in Sidelink for device-to-device
(D2D), URLLC, or LEO satellite networks—the retransmission process may
be bypassed.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17270 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

Fig. 2. Framework overview of on-device AI/LM PHY communication systems integrated with pre-trained language model. This framework incorporates
a link-level simulator to realistically emulate bit-level transmission within PHY communication systems. At the transmission (TX) end, the symbol stream
s undergoes AI-Src-Enc SE(·), vector quantization QE(·; Z), and channel encoder CE(·) to produce x. Conversely, at the receiver (RX) end, the received
signal y is channel-decoded, vector-dequantized, and semantically decoded to recover the symbol ŝ. We evaluate the system in three different criteria: lexical
similarity, semantic similarity, and compression rate.

Fig. 3. Architecture of AI-Source-Encoder (AI-Src-Enc) and Quantizer.

CE(·). In this context, n denotes the total number of tokens,
while dr specifies the dimension of the feature representation
of each token.

After transmission is complete and the hidden states r̂ are
retrieved from the channel decoder CD(·) and provided to
SD(·), the semantic decoder SD(r̂) establishes the condi-
tional distribution pθSD

(ŝi | ŝ0:i−1, r̂) and auto-regressively
samples words from this distribution for each index.

2) Vector Quantization (VQ-VAE): Our framework employs
vector quantization to transform continuous feature representa-
tions into discrete indices, enabling efficient data transmission.
The core of this process is a discrete codebook

Z = {zk}K
k=1 ∈ RK×dz , (4)

where K denotes the codebook size and dz the dimension of
each code vector.

At the TX end, the continuous feature vector r ∈ Rn×dr ,
generated by the AI-Src-Enc SE(·), is quantized into discrete
indices t ∈ Rn×1 using Z. This quantization aims for dz <
dr to ensure transmission efficiency. Specifically, each feature
vector ri ∈ r is divided into segments rij

, each with dimension
dz . For instance, a feature vector ri with dimension 768 and a
codebook dimension of 256 can be segmented into three parts
([ri1 , ri2 , ri3]), each of dimension 256. The quantizer QE(·; Z)
maps each segment rij

to the closest codebook entry zk ∈ Z,
forming the discrete representation ti ∈ t:

ti = QE(ri; Z) =
(

argmin
zk∈Z

∥∥rij
− zk

∥∥2
)
∈ R(dr/dz)×1,

(5)

where (dr/dz) is the length of the encoded sequence. In the
given example, (dr/dz) equals 3.

Conversely, at the RX end, the dequantizer QD(·; Z) con-
verts the received discrete indices t̂i back into continuous
vectors r̂i by directly referencing Z, reconstructing the feature
representation r̂i from t̂i.

3) Channel En/Decoder: The channel encoder CE(·) and
decoder CD(·) incorporate various PHY communication func-
tions, such as Polar code, QAM mapper, OFDM, MIMO,
selected for their alignment with 5G-NR standards. This
approach ensures that our framework mirrors real-world
communication scenarios while acknowledging its partial com-
pliance with 5G-NR protocols.

Firstly, the input bit for CE(·) is grouped with other bits
to form a codeword. Polar codes, a form of linear block error
correction codes, are considered one of the channel coding
schemes in 5G-NR, where low complexity error correction
is available [27]. It adds redundancy to the codeword with
a certain coderate ρ. This helps detect and correct bit errors
introduced during transmission. The codeword is then further
processed and segmented for transmission.

Each segmented codeword is mapped to a specific point on
a constellation diagram, such as our considered QAM. Higher

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17271

QAM schemes offer more bits per symbol (better efficiency)
but are more susceptible to noise. The chosen QAM symbol
is then represented by a combination of amplitude and phase
variations in a carrier signal. The number of bits per symbol
used is denoted by m and the mapper takes as input a message
u ∈ {0, . . . , 2m − 1}

The modulated symbols are divided into subcarriers across
a wide spectrum. This distributes the signal energy, making
it more resilient to frequency-selective fading channels. Each
user (or subframe) can be modulated independently, enabling
adaptive bit rate and channel equalization by using the received
modulation and coding scheme (MCS) index. The MCS index
is dynamically selected and can be adjusted on a per-subframe
basis, based on the latest channel quality information (CQI).

Data is transmitted simultaneously leveraging multiple
antennas, i.e., MIMO, to exploit spatial diversity or multiplex-
ing. This creates multiple independent channels, increasing
reliability, data rate, or both. The processed signal is trans-
mitted over the air. At the receiver, the signal is received by
multiple antennas. The received signal is then demodulated
(QAM decoding) and demultiplexed (OFDM decoding). Chan-
nel coding algorithms (Polar decoding) are applied to correct
any errors introduced during transmission. Finally, the decoded
bits are reassembled into the original data.

4) Channel: In the on-device AI communication, the wire-
less propagation channel, henceforth simply referred to as
channel, introduces various types of noise and impairments,
which can significantly affect the transmitted signal. These
impacts include, but are not limited to, path loss, fading,
Doppler shift, and AWGN.

3GPP has defined standardized models that are used for
the simulation and testing of various wireless system con-
cepts. These channel models describe time variation, delay
dispersion, angular dispersion (at both link ends) and ampli-
tude characteristics. We particularly leverage the standardized
3GPP clustered delay line (CDL)-family channel models, such
as CDL-A, CDL-B, and CDL-C [28]. It is worth noting that
while these CDL models are useful for testing, particularly
for link-level simulation, they often diverge significantly from
real-world channels.

C. Train Objectives

Our framework is jointly trained using two loss functions:
LCE and LVQVAE. The LCE minimizes the discrepancy
between input sentence s at the TX end and its predicted
sentence ŝ at the RX end, employing the cross entropy loss:

LCE(ŝ, s) = −
∑

i=1
p (sti

) log (p (ŝti
))

+ (1− p (sti
)) log (1− p (ŝti

)) , (6)

where p (sti
) is the true distribution in which the correct token

at the i-th index has a probability of 1, and all other tokens
have a probability of 0. On the other hand, p (ŝti

) denotes the
predicted probability distribution over all the possible tokens
for the i-th index. LVQVAE aims to jointly train codebook
Z and the framework in end-to-end to bring the selected
codebook vector (t) as close as possible to the encoder output

(r) as follows:

LVQVAE(r, t; Z) = ∥sg[r]− t∥22 + β ∥sg[t]− r∥22 . (7)

where sg[·] represents the stop-gradient operation, ensuring no
gradient is passed through and treating it as a constant that
doesn’t update. It is applied to r to update only the codebook
in the first term, while it is applied to t to update only the
encoder output, thereby bringing these two closer together. Our
framework is trained by combining the two aforementioned
loss functions as follows:

L = LCE(ŝ, s) + LVQVAE(r, t; Z), (8)

In this training (fine-tuning) process, the trainable parameters
include AI-Src-Enc SE(·), AI-Src-Dec SD(·), the embedding
E , quantizer QE(·; Z), dequantizer QD(·; Z), and the code-
book Z.4

D. Optimization Techniques

Our system employs three key optimization techniques to
enhance performance:

1) Noise-Tuning: We optimize robustness against com-
munication noise by adaptively tuning AI-Src-Enc and
AI-Src-Dec to bit (or symbol) errors or channel noise. During
fine-tuning, we expose them to simulated channel impairments
(e.g., under the 3GPP CDL-A channel) alongside the channel
encoder/decoder. This simple fine-tuning, without modifying
any PHY module, significantly improves reliability across
diverse channel/communication conditions.

2) Codebook: To achieve efficient data compression,
we utilize a VQ-VAE. It learns a codebook of discrete vectors
capturing the essence of the AI-Src-Enc’s continuous repre-
sentations. These codebook vectors, significantly smaller than
the originals, are transmitted, reducing bandwidth demands.
Interestingly, it also mitigates the impact of bit errors during
transmission as its representation learns the bit (or symbol)
error pattern - potentially due to it learning the bit (or symbol)
error pattern during pre-training. Upon reception, the VQ-VAE
decodes these indices back into high-dimensional vectors. This
decoding utilizes the shared latent space (i.e., Z) learned
during pre-training, ensuring effective recovery of the semantic
content within the compressed representation. This method
balances accuracy, compression, and inference complexity
through the adjustable compression rate (and embedding size).

3) Pre-Training: To reduce the need for extensive
application-specific training data, we leverage pre-trained
models like BART-base. This pre-training equips the system
with a broad base of generalizable knowledge, enhancing
generalization performance.

IV. EXPERIMENTS

A. Dataset

1) Train Dataset: Theoretically, for training purposes, any
text can be utilized. We can set both the input s and the output

4Wireless PHY components, including code rate ρ, were not directly
incorporated in the NN training. We acknowledge the potential for adaptive
adjustment of specific standardized functions to improve robustness, which
will be explored in future research.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17272 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

TABLE I
TYPE (OR PARAMETER) FOR CHANNEL EN/DECODER

ŝ to be identical for each sentence. This approach aims to train
the framework to ensure the faithful transmission of sentences
without any modifications, aligning with the primary objective
of the system. However, following the precedent set by earlier
studies in text semantic communication [14], [18], we utilize
the European Parliament dataset [29] (called EuroParl) which
is extracted from the proceedings of the European Parliament.

2) Test Dataset: For the evaluation, it is important to
evaluate the generalization efficacy of framework on out-of-
distribution data, particularly on sentences or even tokens not
encountered during training. To evaluate the generalizability,
we randomly sample 1K sentences from the image-caption
dataset Flickr [30]. The token distribution in this dataset
differs from our training data, a result of reporting bias. This
bias emerges because people tend to report what interests
them (e.g., parliamentary discussions) rather than typical and
general facts (e.g., describing an image).

B. Implementation Details

Our entire framework is built using the Keras frame-
work [31]. For modeling various channel structures, we uti-
lize the Sionna library [22]. We employ the Huggingface
library [32] to load the pre-trained weights of the BART-base
model, which serves as the foundation for initializing the
embedding E , tokenizer T , AI-Src-Enc SE(·) and the AI-Src-
Dec SD(·), respectively. T , pre-trained embedding E . In the
fine-tuning phase, the Adam optimizer [33] is employed, with
the sequence length capped at 64 tokens, and the training has
been done for 3 epochs, using training loss in (8).5 We conduct

5The pre-trained model may or may not use the same training loss function
during its pre-training phase.

a grid search to find the best learning rate from the set [3e-4,
1e-4, 5e-5, 2e-5, 1e-5] and the batch size from [2, 4, 8], using
the development dataset to determine the optimal parameters.
All of our experiments are run on an RTX 2080-Ti using 32-bit
floating-point precision.

Detailed system parameters are summarized in Table I.

C. Evaluation

In traditional communication systems, the performance of
information transmission is evaluated by measuring the accu-
racy of transmitting individual bits (0s and 1s), as reflected
by the Bit Error Rate (BER), or by assessing the fidelity of
conveying symbols, which are collections of bits, denoted by
the Symbol Error Rate (SER).

In contrast, on-device AI communication prioritizes the
transmission of meaningful content,6 focusing on the efficient
utilization of bandwidth for more effective data transfer.
To accurately evaluate the performance of on-device AI
communication systems, we utilize three specific metrics:
lexical similarity (e.g., BLEU [34]), semantic similarity (e.g.,
SBERT [35]) between s and ŝ, and the compression rate of
ρ.

1) BLEU: The BLEU score [34], initially developed for
evaluating machine translation, quantifies the correspondence
between the n-grams of a generated sentence ŝ and those
in a reference sentence s [14], [18]. Here, n-grams mean a
collection of n successive words in a sentence. BLEU score
involves two key factors: (1) n-gram-based precision of the
generated sentence ŝ and the reference sentence s as follow:

pn =

∑
n-gram∈ŝ Countclip(n-gram)∑

n-gram∈ŝ Count(n-gram)
. (9)

Here, Countclip(n-gram) represents the number of n-grams
from the generated sentence ŝ that are found in a reference
sentence s while Count(n-gram) represents the total number
of n-grams in the generated sentence ŝ.

However, simply counting identical n-grams can lead to an
overestimation. Consider the case where the reference sentence
is “I am a boy” and the generated sentence is “a a a a”.
In this scenario, the unigram precision p1 would erroneously
be computed as 1, as each occurrence of the unigram “a” is
found in the reference sentence.

To address this issue, Count clip(n-gram) is employed
to cap the count at the highest frequency observed in the
reference sentence s, thereby preventing overcounting. In the
given example, Count clip(“a”) is adjusted to 1 instead of 4,
reflecting the maximum occurrence of the unigram “a” in the
reference sentence s; (2) A brevity penalty is used to mitigate
the influence of sentence length, preventing the overfitting to
the sentence length. This penalty comes into play when the
length of generated sentence ŝ is shorter than the sentence
length of the reference sentence s as follow:

BP =

{
1, if |ŝ| > |s|
e(1−|s|/|ŝ|). if |ŝ| ≤ |s|

(10)

6This objective aligns with those of other research in the field of semantic
communication.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17273

TABLE II
PERFORMANCE COMPARISON STUDY. EACH BASELINE IS TRAINED WITH EUROPARL TRAINING SET AND EVALUATED USING BOTH THE EUROPARL

AND FLICKR TEST SETS (CHANNEL = RAYLEIGH, EBN0 = 7 [dB]). THE EUROPARL TEST SET ASSESSES THE IN-DISTRIBUTION PERFORMANCE,
WHEREAS THE FLICKR TEST SET EVALUATES THE OUT-OF-DISTRIBUTION PERFORMANCE

The BLEU score for n-grams, represented as BLEU-n,
is calculated as the product of this brevity penalty and the
exponential of the precision score for n-grams exp (log pn).
The overall BELU score is the brevity penalty multiplied by
the exponential of the weighted sum of the log precision scores
for different n-grams, represented as exp

(∑N
n=1 wn log pn

)
,

where wn denotes the weight of the n-gram. Here, BLEU-
n refers to the BLEU score considering only n-grams, and
the general BLEU score is a weighted average of BLEU-1,
BLEU-2, BLEU-3, and BLEU-4. Higher-order n-grams (i.e.,
longer n-grams) are indicative of the fluency and grammatical
accuracy of the generated sentence ŝ.

2) SBERT: Despite a low lexical overlap between the
sentences s and ŝ, their semantic content may be closely
aligned. For example, the words “child” and “children” bear
a close semantic relationship, yet a BLEU score based on
lexical matching would not recognize this and would rate
the similarity as zero. To compute such semantic similarity,
sentences can be represented into vector embeddings through
an embedding model denoted as M . The degree of semantic
similarity can then be quantified by computing the cosine
similarity between these vector representations as follow:

match(ŝ, s) =
M(s) ·M(ŝ)T

∥M(s)∥ ∥M(ŝ)∥
. (11)

Existing research in semantic communication often employs
BERT [36] as the embedding model M to encode sentences.
To derive sentence embedding, they typically use methods
like average pooling or extract the embedding from the first
token (i.e., CLS pooling). These embeddings are then used to
calculate cosine similarity [14], [18]. Nonetheless, such pre-
trained models, when not fine-tuned for the specific task of
semantic textual similarity, may not effectively capture the
true semantic nuances of sentences. This is attributed to the
anisotropic nature of the embedding space, which can lead to
embeddings that do not properly represent the semantic vari-
ance across sentences [37]. Here, we use SBERT [35], which
is fine-tuned on semantic textual similarity tasks, to encode
the sentence embedding.

3) Compression Efficiency: General (lossy) source coding
in conventional systems emphasizes compact representation
of information to enhance transmission/spectral efficiency,
often at the expense of minor data loss. This contrasts with
on-device AI communication, where the exchange of efficient
representations prioritizes semantic fidelity over mere data
volume reduction. The aim here is to transmit the essence
and context of messages with minimal semantic distortion.

The compression rate in on-device AI communication,
therefore, assesses how effectively AI-Src-Enc output is com-
pressed. It is quantified by the ratio of the sizes of AI-Src-Enc
output (r) and channel encoder input (t), described as:

compress(r, t) =
size(t)
size(r)

, (12)

where size(x) denotes the size of vector x.
To evaluate how compression impacts the conveyance

of a message’s meaning, we define compression efficiency
(Ecompress) as a metric that examines the balance between the
compression rate and semantic similarity:

Ecompress ≜
match(ŝ, s; ρ)

log2 (compress(r, t))
, (13)

where match(·, ·; ρ) assesses the SBERT for a given ρ com-
press rate. A large value of Ecompress indicates high compression
efficiency, meaning that the model effectively balances com-
pression and semantic fidelity. Conversely, a small value
signifies lower compression efficiency.

V. EXPERIMENTAL RESULTS

A. Setup/Baseline

We primarily evaluate our proposed on-device AI/LLM
communication frameworks (“Ours”) from four distinct view-
points:

1) PHY Communication: PHY communication conduct
bit-level transmission by leveraging specific PHY functions,
e.g., Polar coding, QAM mapper, OFDM. On the other hand,
existing semantic communication works, exemplified by sys-
tems like DeepSC [14]), conduct symbol-level transmission,
not considering the practical PHY communication functions.

2) Pre-Training Utilization: (1) w/o pre-training
utilizes a transformer architecture for the AI-Src-Enc and AI-
Src-Dec, starting with random initialization; while (2) w/
pre-training begins with pre-trained model weights to
initialize the AI-Src-Enc and AI-Src-Dec.

3) Noise-Tuning Utilization: (1) w/o noise-tuning
fine-tunes the framework in the absence of any simulated
channel noise; while (2) w/ noise-tuning incorporates
simulated channel noise, inducing bit errors, into the fine-
tuning process. In particular, the systems is noise-tuned
(fine-tuned) under the CDL family of channel models and bit-
level PHY communication setup (see details in Table I) and
energy per-bit to noise ratio (EbN0) = 5 ∼ 15 [dB].

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17274 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

TABLE III
RECEIVED OUTPUT EXAMPLES OF BASELINES AND OURS (CHANNEL = RAYLEIGH, EBN0 = 7 [dB])

Fig. 4. Performance comparison with existing frameworks under different EbN0 [dB] (Channel = Rayleigh).

4) Codebook Utilization: In PHY communication, it is
necessary to transform the vector output of the AI-Src-Enc into
a discrete bit-level representation. One straightforward method
is to directly map each floating-point number in the vector to
its bit-level equivalent (e.g., 768-dimensional vector results in
768× 32 bits). However, this method is highly susceptible to
channel noise, where even a single bit error can significantly
distort the vector representation (e.g., floating-point arithmetic
error). To mitigate this issue, we explore and compare various
techniques that are more robust to noise. (1) Direct encodes
the floating-point numbers of r straight into bits for transmis-
sion; (2) Tanh also transforms the floating-point numbers of r
into bits for sending but applies a hyperbolic tangent activation
function to adjust for the cases when bit errors from channel
noise push the received representation r̂ beyond certain range
(e.g., [−1, 1]). By doing so, it realigns the out-of-bound values
back into the [−1, 1] range, and has been used in Seq2Seq-
SC [25]; (3) VQ-VAE employs vector quantization along with
a codebook Z to encode vector representation r into a set of
discrete codebook indices t for transmission.

B. Comparative Study

We begin by evaluating the overall efficacy of our proposed
framework against earlier works in semantic communication.
Each baseline is trained using the EuroParl training set and
evaluated on both the EuroParl and Flickr test sets. There
is a significant overlap in vocabulary between the EuroParl
training and test sets, while the overlap is minimal between
the EuroParl training set and the Flickr test set. This setup
allows for an assessment of the framework’s generalizability.
For a fair comparison, all baseline models, including the
baseline DeepSC which focuses on symbol-level transmission,
are evaluated under identical conditions of 1 × 1 SISO and
Rayleigh channel throughout the comparative study.

Table II illustrates the performance comparison under a
Rayleigh Channel with EbN0 = 7 [dB]. Meanwhile, Table III
offers qualitative examples demonstrating the transmission

accuracy of each methodology, and Fig. 4 highlights the
robustness of each approach.

Tables II and III demonstrate that our framework signif-
icantly outperforms both DeepSC and Seq2Seq-SC. A key
observation from Table II is the substantial decline in
DeepSC’s performance on the Flickr dataset, whereas the
performance reduction for Seq2Seq-SC on Flickr is less severe
in comparison. This difference can be mainly due to the use
of pre-training which exhibits generalization capability
for OOV - that will be elaborated on a later section.

Fig. 4 also demonstrates the robustness of our framework
compared to Seq2Seq-SC across various EbN0 [dB]. An inter-
esting point in Fig. 4 is the gradual increase in DeepSC’s trend
compared to the sharp rise in Seq2Seq-SC and our framework.
This primarily stems from whether the transmission takes
place through bit-level transmission via practical PHY commu-
nication. Transmitting through the PHY process information
in bit-level, which requires converting the floating-point vector
into bits, where bit errors caused by noise can lead to substan-
tial changes in the information (called floating-point arithmetic
error). Therefore, in conditions of substantial noise, such
as when EbN0 <5 [dB], transmitting vector representations
through the PHY becomes challenging. Conversely, DeepSC
transmits representations based on symbol-level, where noise
is directly added into the continuous vector representation,
while not considering the practical issues in bit-level operation.
This results in such a gradual increase in its performance trend
as it does not experience any floating-point error.

C. Ablation Study

In this part of the discussion, we explore the impact of
each component within our optimized E2E on-device AI
communication framework and examine their respective roles.
Table IV shows how performance varies with and without the
use of pre-training and noise-tuning. Additionally,
Table VI shows the performance differences when using

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17275

TABLE IV
PERFORMANCE VARIANCE w/ AND w/o PRE-TRAINING AND NOISE-TUNING (CHANNEL = CDL-A, EBN0 = 4 [dB])

Fig. 5. Impact of noise-tuning (w/o Noise-Tuning vs. w/ Noise-Tuning). The CDL-A channel assesses the in-distribution performance, whereas the CDL-B,
-C, and -D evaluate the out-of-distribution performance.

different transmission approaches including Naive, Tanh
and VQ-VAE, showing the impact of the use of Codebook.

1) Impact of Pre-Training: As shown in Table IV, w/o
pre-training leads to a considerable performance drop.
After increasing the number of training epochs, the frame-
work shows improvement on in-distribution data that shares
a substantial vocabulary and distribution overlap with the
training data. However, its performance on other datasets with
minimal overlap with the training data remains close to zero.
This indicates that pre-training plays a crucial role in
the framework’s ability to generalize - which allows this
framework to be usable across a wide range of applications.

2) Impact of Noise-Tuning: As shown in Table IV, w/o
noise-tuning leads relatively small performance drop.
However, it provides an intriguing insight that LM and
VQ-VAE (i.e., AI-Scr-Enc and AI-Src-Dec) are somewhat able
to learn how to handle bit (or symbol) errors during their
communication with another end.

To assess the impact of noise-tuning in more detail,
we present Table V and Fig. 5. These results compare the
performance of AI-Src-Enc and AI-Src-Dec trained with and
without noise-tuning (specifically, the CDL-A channel at EbN0
of 5 ∼ 15 [dB]) in four different communication conditions
by testing those in CDL-A, B, C, and D channels. The
performance difference showcases the impact of incorporating

TABLE V
IMPACT OF NOISE-TUNING (w/o NOISE-TUNING VS. w/ NOISE-TUNING)

realistic communication errors into the fine-tuning process,
indicating that AI-Src-Enc and AI-Src-Dec can learn and
partially mitigate bit error patterns induced by noisy channel
encountered during link-level PHY communication.7 However,

7We conjecture that the AI-Src-Enc and AI-Src-Dec (e.g., LM and
VQ-VAE) learn bit error pattern of a pre-determined constellation in
mapper/demapper. When symbol error occurs, neighbor symbols likely
are detected, not far-distant symbols. During noise-tuning, such intelligent
en/decoder adaptively modifies its E and Z to be more robust to bit errors.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17276 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

TABLE VI
PERFORMANCE VARIANCE WITH DIFFERENT TRANSMISSION APPROACHES (CHANNEL = CDL-A, EBN0 = 4 [dB])

Fig. 6. Impact of codebook. Figs. 6(a) and 6(b) compares w/o Codebook and w/ Codebook. Figs. 6(c)-6(e) show the tradeoff between compression and
accuracy.

Fig. 7. Compression efficiency over compression rate.

how the AI-Src-Enc and AI-Src-Dec learn and overcome
communication errors is still an open question that we defer to
our future work. Overall, the AI-Src-Enc/AI-Src-Dec archives
EbN0 gain up to ∼1 [dB] by utilizing the noise-tuning.

An important challenge for on-device AI communication is
their robustness to test-time distributional shifts that naturally
occur when the test environment no longer matches the con-
ditions in a training environment. This is present in wireless
communication systems, where the propagation conditions
may change whenever the user is moving. Thus, an important
question is whether the on-device AI communication can
retain its performance, both from the same communication
condition in training (in-distribution) and other communication
conditions (out-of-distribution). To this end, we also test its
performance in CDL-B, -C, and -D channels, whose condition
is not seen in training, in Table V and Figs. 5.8 CDL-B
and CDL-C results indicate that noise-tuning enhances the
robustness even in channels not seen in training, while the
CDL-D (Figs. 5(a) and 5(b)) case highlights that there is
still room for improvement for the noise-tuning to be more
channel-agnostic.

8CDL-A channels encompass both line-of-sight (LoS) and non-LOS (NLoS)
conditions, offering a more diverse representation of wireless channel prop-
agation. In contrast, CDL-B and CDL-C channels are predominantly NLoS.
CDL-D channels, on the other hand, are characterized by LoS.

3) Impact of Codebook: Table VI shows that the VQ-VAE
transmission significantly outperforms other methods (e.g.,
Seq2Seq-SC), achieving near-flawless results under the
CDL-A channel at an EbN0 = 4 [dB]. This demonstrates
the effectiveness of using a discrete codebook for vector
representation quantization in enhancing both accuracy and
transmission robustness.

Figs. 6(a) and 6(b) further illustrate the impact of the
codebook (VQ-VAE) over different EbN0 [dB]. In the scenario
where a codebook is not used, the shape for transmitting
information is an n × dr, where each element is a floating
point vector. Thus, the total size of the transmitted information
x becomes n×dr×32 bits, considering that each floating-point
vector is 32 bits. Conversely, when a codebook is used when
dz = 2, the size of transmission is reduced to n × (dr/2).
In this case, each point in the transmission is an integer
index. The total size of the transmitted information x becomes
n × (dr/2) × 32, with the 32 bits now representing the size
of each integer. It is worth noting that using integer datatype
is notably robust against rounding errors and precision loss;
additionally, it allows for using smaller data types, such as
16-bit integers. Remarkably, even with a 50% compression
of the output of AI-Src-Enc, with-codebook consistently out-
performs without-codebook, achieving EbN0 gains up to ∼6
[dB]. This suggests the potential of the encoded message from
the AI-Src-Enc to be effectively compressed without losing its
accuracy.

4) Tradeoff: Compression (dz and K) vs. Accuracy:
The dimension of each code vector (dz) and codebook
size (K) in AI-Src-Enc/Dec impact the performance of the
on-device AI communication systems. Figs. 6(c) and 6(d)
show how dz affects performance, examining increments
through {2, 4, 8, 16, 32, 64}. Increasing dz enhances compres-
sion but may reduce transmission accuracy, as compressing a
data vector of size dz into a single index increases vulnerability
to transmission errors—a single index error can impact the
entire dz .

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: INTEGRATING PRE-TRAINED LANGUAGE MODEL WITH PHYSICAL LAYER COMMUNICATIONS 17277

Fig. 6(e) shows the relationship between K and the per-
formance. Smaller K reduces computational demands, yet it
might cause an information loss during quantization, which
can adversely affect the fidelity of the reconstructed repre-
sentation. On the other hand, increasing K provides a more
fine-grained resolution and greater accuracy. However, this
comes with increased computational cost due to the cost of
training and inference overhead, and it may even hinder the
convergence of training.

Additionally, Fig. 7 the relationship between compression
efficiency (Ecompress) and code vector dimension, identifying a
Pareto optimal point between the two. Therefore, finding the
right balance and designing an appropriate code vector dimen-
sion and codebook size is crucial for achieving a desirable
balance between accuracy and efficiency. Thus, optimizing
the compression rate (e.g., dz and K) for AI-Src-Enc/Dec is
crucial for striking an optimal balance between accuracy and
computational efficiency.

VI. CONCLUSION

In this study, we integrated the BART pre-trained LM
with the NVIDIA SIONNA link-level simulator to simulate
on-device AI communication within a 5G-NR framework.
The performance of on-device communication was assessed
in bit-level transmission across various PHY communication
setups, including 3GPP CDL-family channels, MIMO, OFDM,
and Polar code.

Our analysis yielded several key insights from three opti-
mization techniques: (1) Integration of pre-trained language
models significantly enhances the generalization capabilities
of the on-device AI communication system; (2) Noise-tuning
results in an approximate EbN0 gain of around 1 [dB],
effectively improving performance in both familiar (CDL-
A channel) and new (CDL-B∼D channels) communication
conditions; (3) Codebook utilization leads to an EbN0 gain of
up to approximately 6 [dB], accompanied by a 50% reduction
in AI-Src-Enc output size. Even with a compression rate of
8 (utilizing only 12.5% of the compressed information), the
system maintains reasonable performance levels.

The implementation strategy involves two stages:
• Training Stage (Offline): The AI-Src-En/Dec embedding,

along with the codebook, are trained by minimizing the
loss function described in Sec. III-C. This computation-
ally intensive stage occurs offline, leveraging powerful
resources. The training (fine-tuning) process can be opti-
mized using efficient fine-tuning approaches, such as
QLoRA [38].

• Inference Stage (On-Device): The on-device system
employs the pre-trained AI-Src-Enc/Dec and codebooks,
requiring only inference-level computations. The infer-
ence process can be optimized using on-device ML
optimization techniques, such as pruning, 8-bit quanti-
zation, or knowledge distillation.

Limitations: While our proposed framework showcases the
performance of on-device AI communication under a bit-level
transmission with a link-level PHY communication setup,
there are notable limitations that should be addressed to
achieve full compliance with 5G-NR communication systems.

Specifically, beyond the PHY, the medium access control
(MAC) or network layers typically employs automatic repeat
request (ARQ) or hybrid ARQ (HARQ) protocols for packet
error correction. The absence of consideration for these
higher-layer protocols in our study limits the assessment of
the practical performance of our framework. Incorporating
ARQ or HARQ mechanisms into our simulation setup would
provide a more comprehensive evaluation of the on-device AI
communication framework’s efficacy in real-world communi-
cation scenarios.

Open Questions: Experimental results in Sec. IV-C highlight
that on-device AI can improve communication performance
through its predictive and contextual learning abilities. While
integrating channel encoding/decoding with AI-Src-Enc/Dec,
such as through JSCC or AI-native PHY/MAC, could unlock
the full potential, this faces challenges like compatibility with
4G-LTE and 5G-NR, regulatory issues, and cost implications.

Therefore, employing AI as a complementary tool while
keeping or carefully optimizing existing PHY or higher-layer
functions presents a more feasible approach. Future research
could focus on: (1) finding the best noise-tuning conditions
without altering PHY functions; (2) exploring how lan-
guage models can effectively counteract noisy conditions; (3)
improving specific PHY functions to boost AI communication;
(4) determining if AI/LM can also learn packet error patterns
to ease the HARQ (or ARQ) process.

ACKNOWLEDGMENT

This work was conducted while Ju-Hyung Lee was affiliated
with the University of Southern California (USC). The authors
express their deep gratitude to Prof. Andreas F. Molisch for
his invaluable feedback and multifaceted support throughout
this work. They also thank Thomas Choi for his insightful
discussions during the initial stages of their research.

REFERENCES

[1] S. Dhar, J. Guo, J. J. Liu, S. Tripathi, U. Kurup, and M. Shah,
“A survey of on-device machine learning: An algorithms and learning
theory perspective,” ACM Trans. Internet Things, vol. 2, no. 3, pp. 1–49,
Jul. 2021.

[2] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[3] S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang, “Recommendation as
language processing (RLP): A unified pretrain, personalized prompt &
predict paradigm (P5),” in Proc. 16th ACM Conf. Recommender Syst.,
New York, NY, USA, Sep. 2022, pp. 299–315.

[4] C. Cui et al., “A survey on multimodal large language models for
autonomous driving,” 2023, arXiv:2311.12320.

[5] G. Delétang et al., “Language modeling is compression,” 2023,
arXiv:2309.10668.

[6] X. Lin, “An overview of 5G advanced evolution in 3GPP release 18,”
IEEE Commun. Standards Mag., vol. 6, no. 3, pp. 77–83, Sep. 2022.

[7] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Ye Li, “Semantic communica-
tions: Principles and challenges,” 2021, arXiv:2201.01389.

[8] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Trans. Cogn.
Commun. Netw., vol. 5, no. 3, pp. 567–579, Sep. 2019.

[9] J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication
for edge inference: An information bottleneck approach,” IEEE J. Sel.
Areas Commun., vol. 40, no. 1, pp. 197–211, Jan. 2022.

[10] D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward semantic
communications: Deep learning-based image semantic coding,” IEEE
J. Sel. Areas Commun., vol. 41, no. 1, pp. 55–71, Jan. 2023.

[11] T.-Y. Tung and D. Gündüz, “DeepWiVe: Deep-learning-aided wireless
video transmission,” IEEE J. Sel. Areas Commun., vol. 40, no. 9,
pp. 2570–2583, Sep. 2022.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

17278 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

[12] S. Wang et al., “Wireless deep video semantic transmission,” IEEE J.
Sel. Areas Commun., vol. 41, no. 1, pp. 214–229, Jan. 2023.

[13] P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless semantic communi-
cations for video conferencing,” IEEE J. Sel. Areas Commun., vol. 41,
no. 1, pp. 230–244, Jan. 2023.

[14] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process., vol. 69,
pp. 2663–2675, 2021.

[15] T. Han, Q. Yang, Z. Shi, S. He, and Z. Zhang, “Semantic-preserved
communication system for highly efficient speech transmission,” IEEE
J. Sel. Areas Commun., vol. 41, no. 1, pp. 245–259, Jan. 2023.

[16] Z. Weng, Z. Qin, X. Tao, C. Pan, G. Liu, and G. Y. Li, “Deep learning
enabled semantic communications with speech recognition and synthe-
sis,” IEEE Trans. Wireless Commun., vol. 22, no. 9, pp. 6227–6240,
Sep. 2023.

[17] A. Vaswani, “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 30, 2017, pp. 6000–6010.

[18] H. Hu, X. Zhu, F. Zhou, W. Wu, R. Q. Hu, and H. Zhu, “One-to-many
semantic communication systems: Design, implementation, performance
evaluation,” IEEE Commun. Lett., vol. 26, no. 12, pp. 2959–2963,
Dec. 2022.

[19] T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 33, 2020, pp. 1877–1901.

[20] A. Srivastava et al., “Beyond the imitation game: Quantifying and extrap-
olating the capabilities of language models,” 2022, arXiv:2206.04615.

[21] S. Thrun, “Lifelong learning algorithms,” in Learning to Learn. Boston,
MA, USA: Springer, 1998, pp. 181–209.

[22] J. Hoydis et al., “Sionna: An open-source library for next-generation
physical layer research,” 2022, arXiv:2203.11854.

[23] A. Van Den Oord et al., “Neural discrete representation learning,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 30, 2017,
pp. 6309–6318.

[24] M. Lewis, “BART: Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehension,” in Proc. 58th
Annu. Meeting Assoc. Comput. Linguistics, Jul. 2020, pp. 7871–7880.

[25] J.-H. Lee, D.-H. Lee, E. Sheen, T. Choi, and J. Pujara, “Seq2Seq-
SC: End-to-end semantic communication systems with pre-trained
language model,” in Proc. Asilomar Conf. Signals, Syst., Comput., 2023,
pp. 260–264.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[27] NR; Multiplexing and Channel Coding, document 3GPP TS 38.212,
Version 17.3.0, Sep. 2022.

[28] Study on Channel Model for Frequencies From 0.5 to 100 GHz,
document 3GPP TS 38.901, Version 17.0.0, Mar. 2022.

[29] P. Koehn, “Europarl: A parallel corpus for statistical machine trans-
lation,” in Proc. Mach. Transl. Summit X, Papers, Phuket, Thailand,
Sep. 2005, pp. 79–86.

[30] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Trans. Assoc. Comput. Linguistics,
vol. 2, pp. 67–78, Dec. 2014.

[31] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io
[32] T. Wolf et al., “Transformers: State-of-the-art natural language pro-

cessing,” in Proc. Empirical Methods Natural Lang. Process., 2020,
pp. 38–45.

[33] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learn. Represent. (ICLR), San Diega, CA, USA, 2015,
pp. 1–15.

[34] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. Annu. Meeting
Assoc. Comput. Linguistics, Philadelphia, PA, USA, 2002, pp. 311–318.

[35] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proc. Conf. Empirical Methods
Natural Lang. Process., Hong Kong, 2019, pp. 3982–3992.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. Assoc. Comput. Linguistics, Minneapolis, MN, USA, 2019,
pp. 4171–4186.

[37] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, and L. Li, “On the
sentence embeddings from pre-trained language models,” in Proc. Conf.
Empirical Methods Natural Lang. Process., Nov. 2020, pp. 9119–9130.

[38] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA:
Efficient finetuning of quantized LLMs,” 2023, arXiv:2305.14314.

Ju-Hyung Lee received the Ph.D. degree from
Korea University, Seoul, South Korea. He was a
Post-Doctoral Researcher of electrical and computer
engineering with the University of Southern Cali-
fornia (USC), Los Angeles, CA, USA, where he
worked under the supervision of Prof. Andreas F.
Molisch. Before that, he was a Research Professor
with Korea University. He is currently a Principal
Researcher with Nokia, Sunnyvale, CA, USA. His
research interests include generative AI solutions
for wireless communication systems and on-device

AI/LLM. He has been recognized with several prestigious awards, including
the First-Rank in a Machine Learning (ML) Competition, the Best Paper
Awards at the Key IEEE Conferences, and the Grand Prize for Research
Excellence from Korea University. For more information, visit https://juhyung-
lee.com/.

Dong-Ho Lee is currently pursuing the Ph.D. degree
in computer science specializing in natural language
processing (NLP) and ML with the Information
Sciences Institute (ISI), University of Southern Cal-
ifornia (USC), under the supervision of Prof. Jay
Pujara. His research experience includes collab-
orations with Google DeepMind, Snap Inc., and
Microsoft Research. He is contributing to the devel-
opment of advanced AI agent systems with Softly
AI, Seoul, South Korea. For further details, please
visit https://danny-lee.info.

Joohan Lee received the master’s degree in com-
puter science from USC. He was a Research
Assistant with USC, under the supervision of Dr.
Ju-Hyung Lee and Prof. Andreas F. Molisch, focus-
ing on generative AI for wireless communication
systems. He also interned at Purdue University,
conducting research in NLP, specifically software
entity recognition, under the supervision of Prof.
Tianyi Zhang. His research interests include tackling
complex challenges in NLP, computer vision, and
computer networking.

Jay Pujara is currently a Research Associate Pro-
fessor of computer science with the University of
Southern California (USC) and a Principal Scien-
tist and the Director of the Center on Knowledge
Graphs, Information Sciences Institute, USC. He is
the author of over 100 peer-reviewed publications.
His research interests include artificial intelligence,
specifically knowledge graphs and statistical rela-
tional learning. He has received five best paper
awards and has been featured in AI Magazine. For
more information, visit https://www.jaypujara.org.

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 19:56:28 UTC from IEEE Xplore. Restrictions apply.

https://juhyung-lee.com/
https://juhyung-lee.com/

